Application of Intraoperative Mass Spectrometry and Data Analytics for Oncological Margin Detection, A Review

边距(机器学习) 计算机科学 模式 分析 医学 数据提取 数据挖掘 机器学习 梅德林 政治学 社会科学 社会学 法学
作者
Alice Santilli,Kevin Ren,Richard D. Oleschuk,Martin Kaufmann,John F. Rudan,Gábor Fichtinger,Parvin Mousavi
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (7): 2220-2232 被引量:9
标识
DOI:10.1109/tbme.2021.3139992
摘要

Objective: A common phase of early-stage oncological treatment is the surgical resection of cancerous tissue. The presence of cancer cells on the resection margin, referred to as positive margin, is correlated with the recurrence of cancer and may require re-operation, negatively impacting many facets of patient outcomes. There exists a significant gap in the surgeon's ability to intraoperatively delineate between tissues. Mass spectrometry methods have shown considerable promise as intraoperative tissue profiling tools that can assist with the complete resection of cancer. To do so, the vastness of the information collected through these modalities must be digested, relying on robust and efficient extraction of insights through data analysis pipelines. Methods: We review clinical mass spectrometry literature and prioritize intraoperatively applied modalities. We also survey the data analysis methods employed in these studies. Results: Our review outlines the advantages and shortcomings of mass spectrometry imaging and point-based tissue probing methods. For each modality, we identify statistical, linear transformation and machine learning techniques that demonstrate high performance in classifying cancerous tissues across several organ systems. A limited number of studies presented results captured intraoperatively. Conclusion: Through continued research of data centric techniques, like mass spectrometry, and the development of robust analysis approaches, intraoperative margin assessment is becoming feasible. Significance: By establishing the relatively short history of mass spectrometry techniques applied to surgical studies, we hope to inform future applications and aid in the selection of suitable data analysis frameworks for the development of intraoperative margin detection technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsh完成签到 ,获得积分10
刚刚
如意的子默完成签到,获得积分10
刚刚
Hello应助jhui23z采纳,获得10
刚刚
1秒前
寻道图强应助奋斗梦旋采纳,获得30
1秒前
方赫然应助奋斗梦旋采纳,获得10
1秒前
方赫然应助奋斗梦旋采纳,获得10
2秒前
2秒前
彭于彦祖应助奋斗梦旋采纳,获得200
2秒前
丰知然应助Dr.Dream采纳,获得10
4秒前
xujy完成签到,获得积分10
4秒前
baidu1024完成签到,获得积分10
4秒前
theThreeMagi完成签到,获得积分10
4秒前
5秒前
小李完成签到 ,获得积分10
5秒前
汉堡包应助儒雅的逍遥采纳,获得10
6秒前
fengw420发布了新的文献求助10
7秒前
Jeff发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
林林完成签到 ,获得积分10
10秒前
11秒前
石友瑶发布了新的文献求助10
11秒前
小二郎应助张才豪采纳,获得10
11秒前
芹123完成签到,获得积分10
12秒前
沈家宁发布了新的文献求助10
12秒前
852应助科研通管家采纳,获得10
13秒前
xzy998应助科研通管家采纳,获得20
13秒前
Hello应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
HCLonely应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
海盐气泡水完成签到,获得积分10
14秒前
寒烟发布了新的文献求助10
15秒前
静心安逸发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295866
求助须知:如何正确求助?哪些是违规求助? 2931755
关于积分的说明 8453560
捐赠科研通 2604360
什么是DOI,文献DOI怎么找? 1421654
科研通“疑难数据库(出版商)”最低求助积分说明 661074
邀请新用户注册赠送积分活动 644023