Application of Intraoperative Mass Spectrometry and Data Analytics for Oncological Margin Detection, A Review

边距(机器学习) 计算机科学 模式 分析 医学 数据提取 数据挖掘 机器学习 梅德林 社会科学 社会学 政治学 法学
作者
Alice Santilli,Kevin Ren,Richard D. Oleschuk,Martin Kaufmann,John F. Rudan,Gábor Fichtinger,Parvin Mousavi
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (7): 2220-2232 被引量:9
标识
DOI:10.1109/tbme.2021.3139992
摘要

Objective: A common phase of early-stage oncological treatment is the surgical resection of cancerous tissue. The presence of cancer cells on the resection margin, referred to as positive margin, is correlated with the recurrence of cancer and may require re-operation, negatively impacting many facets of patient outcomes. There exists a significant gap in the surgeon's ability to intraoperatively delineate between tissues. Mass spectrometry methods have shown considerable promise as intraoperative tissue profiling tools that can assist with the complete resection of cancer. To do so, the vastness of the information collected through these modalities must be digested, relying on robust and efficient extraction of insights through data analysis pipelines. Methods: We review clinical mass spectrometry literature and prioritize intraoperatively applied modalities. We also survey the data analysis methods employed in these studies. Results: Our review outlines the advantages and shortcomings of mass spectrometry imaging and point-based tissue probing methods. For each modality, we identify statistical, linear transformation and machine learning techniques that demonstrate high performance in classifying cancerous tissues across several organ systems. A limited number of studies presented results captured intraoperatively. Conclusion: Through continued research of data centric techniques, like mass spectrometry, and the development of robust analysis approaches, intraoperative margin assessment is becoming feasible. Significance: By establishing the relatively short history of mass spectrometry techniques applied to surgical studies, we hope to inform future applications and aid in the selection of suitable data analysis frameworks for the development of intraoperative margin detection technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助AKA采纳,获得10
刚刚
2秒前
2秒前
SciGPT应助跳跃的小林采纳,获得10
2秒前
4秒前
SONG发布了新的文献求助10
6秒前
999999发布了新的文献求助10
7秒前
IU2021发布了新的文献求助10
8秒前
清秀冰岚完成签到,获得积分10
9秒前
杨德帅发布了新的文献求助10
9秒前
充电宝应助马不停蹄采纳,获得10
10秒前
善学以致用应助欣喜冷卉采纳,获得10
10秒前
11秒前
11秒前
Kristopher完成签到 ,获得积分10
11秒前
12秒前
希望天下0贩的0应助lokiyyy采纳,获得10
12秒前
悦耳怜珊完成签到,获得积分10
14秒前
14秒前
AKA发布了新的文献求助10
15秒前
赘婿应助执着书南采纳,获得10
16秒前
GUGE发布了新的文献求助10
17秒前
17秒前
17秒前
哀伤发布了新的文献求助10
17秒前
xccc完成签到,获得积分10
17秒前
搞怪的金鑫完成签到,获得积分10
18秒前
LiangRen发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
如果天气好的话完成签到,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
haoliu完成签到,获得积分10
20秒前
华仔应助霸气慕山采纳,获得10
22秒前
巧语发布了新的文献求助10
23秒前
李健应助屈勇旭采纳,获得10
23秒前
乐乐应助科研民工李采纳,获得10
25秒前
jianglili完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680081
求助须知:如何正确求助?哪些是违规求助? 4995956
关于积分的说明 15171678
捐赠科研通 4839887
什么是DOI,文献DOI怎么找? 2593687
邀请新用户注册赠送积分活动 1546696
关于科研通互助平台的介绍 1504768