Application of Intraoperative Mass Spectrometry and Data Analytics for Oncological Margin Detection, A Review

边距(机器学习) 计算机科学 模式 分析 医学 数据提取 数据挖掘 机器学习 梅德林 政治学 社会科学 社会学 法学
作者
Alice Santilli,Kevin Ren,Richard D. Oleschuk,Martin Kaufmann,John F. Rudan,Gábor Fichtinger,Parvin Mousavi
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (7): 2220-2232 被引量:9
标识
DOI:10.1109/tbme.2021.3139992
摘要

Objective: A common phase of early-stage oncological treatment is the surgical resection of cancerous tissue. The presence of cancer cells on the resection margin, referred to as positive margin, is correlated with the recurrence of cancer and may require re-operation, negatively impacting many facets of patient outcomes. There exists a significant gap in the surgeon's ability to intraoperatively delineate between tissues. Mass spectrometry methods have shown considerable promise as intraoperative tissue profiling tools that can assist with the complete resection of cancer. To do so, the vastness of the information collected through these modalities must be digested, relying on robust and efficient extraction of insights through data analysis pipelines. Methods: We review clinical mass spectrometry literature and prioritize intraoperatively applied modalities. We also survey the data analysis methods employed in these studies. Results: Our review outlines the advantages and shortcomings of mass spectrometry imaging and point-based tissue probing methods. For each modality, we identify statistical, linear transformation and machine learning techniques that demonstrate high performance in classifying cancerous tissues across several organ systems. A limited number of studies presented results captured intraoperatively. Conclusion: Through continued research of data centric techniques, like mass spectrometry, and the development of robust analysis approaches, intraoperative margin assessment is becoming feasible. Significance: By establishing the relatively short history of mass spectrometry techniques applied to surgical studies, we hope to inform future applications and aid in the selection of suitable data analysis frameworks for the development of intraoperative margin detection technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼的白开水完成签到,获得积分20
刚刚
刚刚
刚刚
刚刚
刚刚
小锦完成签到,获得积分10
1秒前
时尚寄真完成签到,获得积分10
1秒前
wangyali发布了新的文献求助10
1秒前
2秒前
爆米花应助友好芷蕊采纳,获得10
2秒前
3秒前
龙彦完成签到,获得积分10
4秒前
fmsai发布了新的文献求助10
4秒前
4秒前
笨笨醉薇发布了新的文献求助10
5秒前
gyd发布了新的文献求助10
5秒前
善良香岚完成签到,获得积分10
6秒前
6秒前
蜗牛完成签到,获得积分10
7秒前
7秒前
HYG发布了新的文献求助10
8秒前
Mansis发布了新的文献求助10
8秒前
时有落花至完成签到,获得积分10
8秒前
8秒前
8秒前
雾见春完成签到 ,获得积分10
9秒前
22222应助科研通管家采纳,获得30
9秒前
今后应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
平淡向雁完成签到,获得积分10
9秒前
ding应助科研通管家采纳,获得10
9秒前
wanci应助xiaoliang采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
9秒前
思源应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340292
求助须知:如何正确求助?哪些是违规求助? 4476835
关于积分的说明 13932933
捐赠科研通 4372659
什么是DOI,文献DOI怎么找? 2402478
邀请新用户注册赠送积分活动 1395350
关于科研通互助平台的介绍 1367444