Voxelated meniscus-confined electrodeposition of 3D metallic microstructures

微尺度化学 材料科学 微观结构 制作 弯月面 纳米技术 纳米尺度 复合材料 光学 数学 入射(几何) 医学 物理 病理 数学教育 替代医学
作者
Yutao Wang,Xin Xiong,Bing‐Feng Ju,Yuan-Liu Chen
出处
期刊:International Journal of Machine Tools & Manufacture [Elsevier]
卷期号:174: 103850-103850 被引量:14
标识
DOI:10.1016/j.ijmachtools.2022.103850
摘要

Additive manufacturing is a rapidly evolving technology for the fabrication of 3D metallic microstructures. However, the production of complex 3D metallic micro/nanoscale structures with satisfactory mechanical properties is challenging for existing additive manufacturing technologies. In this study, a voxelated meniscus-confined electrodeposition 3D printing technology was developed to fabricate 3D metallic structures in an ambient environment at the microscale and nanoscale with high stiffness and stability. The proposed method changes the continuous meniscus-confined electrodeposition process to a discrete process, which facilitates the fabrication of 3D metallic microstructures and strengthens the stiffness of meniscus-confined electrodeposition. To verify the newly proposed method, a single-voxel deposition, micropillars, a micropillar array, tilt micropillars, and multi-pillar supporting microstructures were fabricated. In-situ microscale compression tests under scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were conducted to compare the mechanical performances of the fabricated metallic microstructures obtained using the continuous and the voxelated meniscus-confined electrodeposition methods. Our results demonstrate that micropillars fabricated via the voxelated meniscus-confined electrodeposition method could have much smaller nanograined structures and have higher stiffness than those structures fabricated via the continuous method. We discussed the formation process of nanograins fabricated by the voxelated method and it is found that the superior mechanical property of the structures fabricated by the voxelated method was owing to its high current density and discrete voltage supply in the electrodeposition process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张达发布了新的文献求助10
1秒前
CodeCraft应助呆呆的猕猴桃采纳,获得10
1秒前
WL关闭了WL文献求助
2秒前
谷大喵唔发布了新的文献求助10
2秒前
3秒前
3秒前
贾小云完成签到,获得积分10
4秒前
Akim应助一一采纳,获得10
4秒前
WXR0721完成签到,获得积分10
4秒前
zj完成签到,获得积分20
4秒前
LZQ应助冒险寻羊采纳,获得30
5秒前
无限猕猴桃完成签到,获得积分10
5秒前
seannnnnnn发布了新的文献求助10
5秒前
畅畅发布了新的文献求助10
6秒前
5Hz发布了新的文献求助10
6秒前
54zxy完成签到,获得积分10
7秒前
CipherSage应助Aurora采纳,获得30
7秒前
7秒前
8秒前
WXR0721发布了新的文献求助10
9秒前
紫云兔子发布了新的文献求助20
9秒前
m1发布了新的文献求助10
9秒前
Leo发布了新的文献求助10
9秒前
9秒前
王珊完成签到,获得积分10
10秒前
11秒前
Magician发布了新的文献求助10
11秒前
11秒前
shmily完成签到,获得积分20
12秒前
12秒前
12秒前
奋斗忆灵完成签到,获得积分10
13秒前
张达完成签到 ,获得积分20
13秒前
清秀的语堂完成签到,获得积分20
14秒前
玛璃完成签到,获得积分10
15秒前
王珊发布了新的文献求助10
15秒前
Wink14551发布了新的文献求助10
16秒前
16秒前
谷大喵唔完成签到,获得积分20
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944