An efficient virtualized network function deployment scheme for service function chain using deep Q‐network

计算机科学 服务质量 能源消耗 虚拟网络 计算机网络 虚拟化 体验质量 分布式计算 云计算 操作系统 生态学 生物
作者
Weicheng Wu,Shang‐Juh Kao,Fu‐Min Chang
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:35 (6) 被引量:3
标识
DOI:10.1002/dac.5084
摘要

Summary Virtualized network functions (VNFs) are virtualized network services running on the network functions virtualization infrastructure in order to replace physical hardware. Integrating with software defined networking and network functions virtualization, internet service providers (ISPs) can chain VNFs together, called service function chain (SFC), to provide various network service demands with virtual links. Many studies have proposed for the VNFs deployment under different objectives, for example, energy, delay, quality of service (QoS), and quality of experience (QoE). From the aspects of both ISPs and customers, both energy consumption and QoE are the primary concerns for the purpose of operating expense reduction and users' satisfaction. This paper proposes a QoS/QoE/energy‐aware deep Q‐network (DQN)‐based scheme, called DQN‐QQE for VNFs deployment under the consideration of both energy consumption and QoE requirement with QoS constraints. The reward of the proposed scheme is formulated by the Weber‐Fechner law and the exponential interdependency of QoE and QoS (IQX) hypothesis. Afterwards, we compared the proposed DQN‐QQE to the QoS/QoE‐aware approach DQN‐Q2‐SFC, brute force, and randomness in terms of energy, QoE, error rate, and processing time. The simulation results revealed that DQN‐QQE is more stable and is better than DQN‐Q2‐SFC and randomness approach in terms of energy, QoE, and error rate. The average processing time and energy consumption of the proposed DQN‐QQE was 43% and 11% less than DQN‐Q2‐SFC, respectively. Although brute force approach is better than others in terms of energy, QoE, and error rate, the processing time of brute force approach is nearly 20 times larger than the proposed DQN‐QQE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
赘婿应助王小帅ok采纳,获得10
2秒前
久伴久爱完成签到 ,获得积分10
2秒前
林晨则静完成签到 ,获得积分10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
mingmingjiu发布了新的文献求助10
4秒前
张艺馨发布了新的文献求助10
4秒前
赵寒迟完成签到 ,获得积分10
4秒前
cwz发布了新的文献求助10
4秒前
体贴的老太完成签到,获得积分20
4秒前
孟龙威发布了新的文献求助10
5秒前
完美世界应助无奈敏采纳,获得10
5秒前
小陈完成签到,获得积分10
6秒前
彭于晏应助残幻采纳,获得10
6秒前
123应助无敌小b采纳,获得10
7秒前
FashionBoy应助啤酒半斤采纳,获得10
7秒前
7秒前
哭泣的宛丝完成签到,获得积分10
8秒前
biu发布了新的文献求助10
8秒前
鱼猫完成签到,获得积分20
8秒前
9秒前
chenhy完成签到,获得积分10
9秒前
帅气的Bond完成签到,获得积分10
10秒前
aa发布了新的文献求助10
11秒前
小青椒应助cwz采纳,获得30
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
Owen应助aa采纳,获得10
14秒前
牛牛的牛牛完成签到 ,获得积分10
15秒前
16秒前
旺仔先生完成签到,获得积分10
16秒前
体贴擎完成签到,获得积分10
17秒前
喜悦幻巧完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337