Human–Computer Interaction Cognitive Behavior Modeling of Command and Control Systems

计算机科学 构造(python库) 软件 过程(计算) 一致性(知识库) 认知模型 任务(项目管理) 模拟 人机交互 认知 人工智能 程序设计语言 管理 神经科学 经济 生物
作者
Ning Li,Xingjiang Chen,Yanghe Feng,Jincai Huan
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (14): 12723-12736 被引量:2
标识
DOI:10.1109/jiot.2021.3138247
摘要

Human–computer interaction cognitive behavior (HCICB) modeling faces four deficiencies: 1) lack of a standard framework model; 2) large simulation error; 3) single simulation dimension; and 4) lack of a simulation software. To solve these deficiencies, we have carried out work in four aspects. First, we construct an HCICB model with the user, system device, and environment as the core elements, which provides a unified framework for the subsequent HCICB modeling in the Military Internet of Things (MIoT) command and control (C2) system. Second, we correct visual and motion parameters in the adaptive control of thought rational module of the Cogtool model by the commander in the loop (CIL) experiment. Third, we construct a mental workload (MW) prediction model of the MIoT C2 system based on improved visual auditory cognitive psychomotor, which realizes fast, high-precision, and quantitative MW prediction. It is added as a simulation dimension for the HCICB. Fourth, we develop MwCogtool, an HCICB prediction software that can rapidly simulate typical tasks at the design and usage stages of the MIoT C2 system, and also can output six parameters, including task completion time (TCT), MW, eye movement prepare time, eye movement execution time, motion time, and cognitive time in the whole process quickly and visually. In addition, we select 20 real users and 9 typical tasks of the MIoT C2 system to carry out the CIL verification experiment. Compared with Cogtool, MwCogtool reduces the maximum simulation error in TCT of the C2 system from 45.00% to 5.58%. The consistency of simulation results with real user data reaches 0.99. The results of the MW prediction model can significantly and negatively predict the change of real users’ eye movement, and can accurately predict the trend of MW change. Simultaneously, we build a fitting model between the mean MW prediction value and eye movement parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dulcetlemon完成签到 ,获得积分10
刚刚
1秒前
动听衬衫发布了新的文献求助10
1秒前
ws_WS_完成签到 ,获得积分10
2秒前
2秒前
wyyt完成签到,获得积分10
2秒前
烨然发布了新的文献求助10
2秒前
yangshu发布了新的文献求助10
3秒前
给我嘉晚饭完成签到 ,获得积分10
3秒前
晨屿完成签到,获得积分10
3秒前
很美味完成签到,获得积分20
3秒前
完美的香芦完成签到,获得积分10
3秒前
4秒前
季宇完成签到,获得积分10
4秒前
sos完成签到,获得积分10
5秒前
5秒前
zmz发布了新的文献求助10
5秒前
张锐斌发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
爱听歌安彤完成签到,获得积分10
6秒前
lxt完成签到,获得积分10
6秒前
6秒前
6秒前
aaa完成签到,获得积分10
6秒前
xixixi完成签到,获得积分10
6秒前
Akim应助Fezco采纳,获得10
6秒前
sisi完成签到,获得积分10
6秒前
lyy发布了新的文献求助10
6秒前
时冬冬应助daiduo采纳,获得20
7秒前
小徐801完成签到,获得积分10
7秒前
yszyy23完成签到,获得积分10
7秒前
善学以致用应助yangshu采纳,获得10
7秒前
自信的寄凡完成签到 ,获得积分20
8秒前
朴素臻完成签到,获得积分10
8秒前
可爱的小树苗完成签到,获得积分10
8秒前
9秒前
yeguo完成签到,获得积分10
9秒前
kenny完成签到,获得积分10
9秒前
轻舟空渡完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005