Human–Computer Interaction Cognitive Behavior Modeling of Command and Control Systems

计算机科学 构造(python库) 软件 过程(计算) 一致性(知识库) 认知模型 任务(项目管理) 模拟 人机交互 认知 人工智能 程序设计语言 管理 神经科学 经济 生物
作者
Ning Li,Xingjiang Chen,Yanghe Feng,Jincai Huan
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (14): 12723-12736 被引量:2
标识
DOI:10.1109/jiot.2021.3138247
摘要

Human–computer interaction cognitive behavior (HCICB) modeling faces four deficiencies: 1) lack of a standard framework model; 2) large simulation error; 3) single simulation dimension; and 4) lack of a simulation software. To solve these deficiencies, we have carried out work in four aspects. First, we construct an HCICB model with the user, system device, and environment as the core elements, which provides a unified framework for the subsequent HCICB modeling in the Military Internet of Things (MIoT) command and control (C2) system. Second, we correct visual and motion parameters in the adaptive control of thought rational module of the Cogtool model by the commander in the loop (CIL) experiment. Third, we construct a mental workload (MW) prediction model of the MIoT C2 system based on improved visual auditory cognitive psychomotor, which realizes fast, high-precision, and quantitative MW prediction. It is added as a simulation dimension for the HCICB. Fourth, we develop MwCogtool, an HCICB prediction software that can rapidly simulate typical tasks at the design and usage stages of the MIoT C2 system, and also can output six parameters, including task completion time (TCT), MW, eye movement prepare time, eye movement execution time, motion time, and cognitive time in the whole process quickly and visually. In addition, we select 20 real users and 9 typical tasks of the MIoT C2 system to carry out the CIL verification experiment. Compared with Cogtool, MwCogtool reduces the maximum simulation error in TCT of the C2 system from 45.00% to 5.58%. The consistency of simulation results with real user data reaches 0.99. The results of the MW prediction model can significantly and negatively predict the change of real users’ eye movement, and can accurately predict the trend of MW change. Simultaneously, we build a fitting model between the mean MW prediction value and eye movement parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wangshibing完成签到,获得积分10
1秒前
2秒前
爱吃香菜的哆啦A梦完成签到,获得积分10
2秒前
忧心的绮彤完成签到,获得积分20
2秒前
2秒前
SciGPT应助跳跃尔琴采纳,获得10
3秒前
Cheng完成签到,获得积分10
3秒前
哆啦A榕完成签到,获得积分10
3秒前
科研通AI2S应助33采纳,获得10
3秒前
万万完成签到,获得积分10
3秒前
CHN发布了新的文献求助10
3秒前
lalala应助老迟到的灵煌采纳,获得10
4秒前
4秒前
4秒前
ihuhiu完成签到,获得积分10
4秒前
ZengJuan完成签到,获得积分10
5秒前
大模型应助明珠采纳,获得10
6秒前
memory发布了新的文献求助10
6秒前
青天如墨发布了新的文献求助10
6秒前
斯文发布了新的文献求助10
6秒前
远看寒山发布了新的文献求助30
7秒前
是小程啊完成签到,获得积分10
8秒前
8秒前
杨烨华完成签到,获得积分20
8秒前
8秒前
8秒前
CHN完成签到,获得积分10
8秒前
啖肉饶舌完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
圆圆发布了新的文献求助10
10秒前
xxxk完成签到,获得积分20
10秒前
一枚研究僧应助成就白秋采纳,获得10
10秒前
10秒前
33完成签到,获得积分20
10秒前
所所应助yuyu采纳,获得10
11秒前
12秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231774
求助须知:如何正确求助?哪些是违规求助? 2878767
关于积分的说明 8207671
捐赠科研通 2546168
什么是DOI,文献DOI怎么找? 1375773
科研通“疑难数据库(出版商)”最低求助积分说明 647465
邀请新用户注册赠送积分活动 622606