Compare the performance of multiple binary classification models in microbial high-throughput sequencing datasets

支持向量机 人工智能 随机森林 计算机科学 二进制数 机器学习 二元分类 人工神经网络 估计员 预测建模 数据挖掘 模式识别(心理学) 数学 统计 算术
作者
Nuohan Xu,Zhenyan Zhang,Yechao Shen,Qi Zhang,Zhen Liu,Yitian Yu,Yan Wang,Chaotang Lei,Mingjing Ke,Danyan Qiu,Tao Lu,Yi‐Ling Chen,Juntao Xiong,Haifeng Qian
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:837: 155807-155807 被引量:4
标识
DOI:10.1016/j.scitotenv.2022.155807
摘要

The development of machine learning and deep learning provided solutions for predicting microbiota response on environmental change based on microbial high-throughput sequencing. However, there were few studies specifically clarifying the performance and practical of two types of binary classification models to find a better algorithm for the microbiota data analysis. Here, for the first time, we evaluated the performance, accuracy and running time of the binary classification models built by three machine learning methods - random forest (RF), support vector machine (SVM), logistic regression (LR), and one deep learning method - back propagation neural network (BPNN). The built models were based on the microbiota datasets that removed low-quality variables and solved the class imbalance problem. Additionally, we optimized the models by tuning. Our study demonstrated that dataset pre-processing was a necessary process for model construction. Among these 4 binary classification models, BPNN and RF were the most suitable methods for constructing microbiota binary classification models. Using these 4 models to predict multiple microbial datasets, BPNN showed the highest accuracy and the most robust performance, while the RF method was ranked second. We also constructed the optimal models by adjusting the epochs of BPNN and the n_estimators of RF for six times. The evaluation related to performances of models provided a road map for the application of artificial intelligence to assess microbial ecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茶柠完成签到 ,获得积分10
1秒前
3秒前
Zzzzzzz完成签到 ,获得积分10
3秒前
3秒前
李爱国应助赵兴才采纳,获得10
4秒前
4秒前
KYRIELIU完成签到,获得积分10
4秒前
gujiguji发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
7秒前
sun0115发布了新的文献求助10
7秒前
Labubu发布了新的文献求助10
8秒前
小马甲应助zzy采纳,获得10
8秒前
思源应助超帅的萤采纳,获得10
8秒前
mimiya发布了新的文献求助10
9秒前
COCO完成签到,获得积分10
9秒前
搜集达人应助yi采纳,获得10
10秒前
ww发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
Owen应助崔艺笛采纳,获得10
13秒前
sweat发布了新的文献求助100
14秒前
lcpppppp关注了科研通微信公众号
14秒前
15秒前
15秒前
16秒前
16秒前
NexusExplorer应助超级的幻然采纳,获得10
16秒前
潇洒飞丹完成签到,获得积分20
16秒前
SYLH应助Mr_Hao采纳,获得20
17秒前
wanci应助BREEZE采纳,获得10
17秒前
mimiya完成签到,获得积分10
17秒前
CodeCraft应助欢喜若雁采纳,获得10
20秒前
小匹夫发布了新的文献求助10
20秒前
May应助科研通管家采纳,获得10
20秒前
Rondab应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
Rondab应助科研通管家采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956069
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107074
捐赠科研通 3232847
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870396
科研通“疑难数据库(出版商)”最低求助积分说明 802019