Recent advances on loss functions in deep learning for computer vision

计算机科学 人工智能 深度学习 Softmax函数 机器学习 跳跃式监视 功能(生物学) 人工神经网络 生物 进化生物学
作者
Yingjie Tian,Duo Su,Stanislao Lauria,Xiaohui Liu
出处
期刊:Neurocomputing [Elsevier]
卷期号:497: 129-158 被引量:59
标识
DOI:10.1016/j.neucom.2022.04.127
摘要

The loss function, also known as cost function, is used for training a neural network or other machine learning models. Over the past decade, researchers have designed many loss functions for machine learning, such as mean squared error and mean absolute error. However, in deep learning, neurons of the last layer are usually activated by a sigmoid or softmax function. Thus, training with traditional losses would cause lower efficiency and accuracy. Recently, designing loss functions for deep learning methods has become one of the most challenging problems. This paper provides a comprehensive review of the recent progress and frontiers about loss functions in deep learning, especially for computer vision tasks. Specifically, we discuss the loss functions in three main computer vision tasks, i.e., object detection, face recognition, and image segmentation. Scholars have proposed several novel loss functions to cope with the specific problems such as imbalanced data, uncertain distribution of the predicted bounding boxes, varied overlapped mode between two bounding boxes and over-fitting. The survey details the source, derivation, and properties of each loss function. Furthermore, we also provide some advanced challenges about robust losses, generative adversarial networks, noise-tolerant losses, and semantic data augmentation. Finally, we deliver a summary and some promising future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiuxiu_27发布了新的文献求助10
刚刚
April发布了新的文献求助10
刚刚
打打应助核桃采纳,获得10
刚刚
刚刚
elena发布了新的文献求助10
刚刚
现代的战斗机完成签到,获得积分10
刚刚
刘星星发布了新的文献求助10
1秒前
萧秋灵完成签到,获得积分10
1秒前
1秒前
2秒前
YaoX完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
YE发布了新的文献求助10
3秒前
3秒前
4秒前
张肥肥完成签到 ,获得积分20
4秒前
明亮的斩关注了科研通微信公众号
4秒前
科研通AI5应助搞怪的人龙采纳,获得10
4秒前
5秒前
xiuxiu_27完成签到 ,获得积分10
5秒前
李健应助qym采纳,获得10
6秒前
风趣的爆米花完成签到,获得积分20
6秒前
韭菜发布了新的文献求助10
6秒前
6秒前
6秒前
yzxzdm完成签到 ,获得积分10
7秒前
小破仁666发布了新的文献求助10
7秒前
7秒前
英姑应助优秀的逊采纳,获得10
8秒前
ccc完成签到,获得积分20
8秒前
8秒前
8秒前
小二郎应助诗谙采纳,获得10
8秒前
8秒前
8秒前
圣晟胜发布了新的文献求助10
9秒前
9秒前
等待幼荷完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740