亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recent advances on loss functions in deep learning for computer vision

计算机科学 人工智能 深度学习 Softmax函数 机器学习 跳跃式监视 功能(生物学) 人工神经网络 生物 进化生物学
作者
Yingjie Tian,Duo Su,Stanislao Lauria,Xiaohui Liu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:497: 129-158 被引量:84
标识
DOI:10.1016/j.neucom.2022.04.127
摘要

The loss function, also known as cost function, is used for training a neural network or other machine learning models. Over the past decade, researchers have designed many loss functions for machine learning, such as mean squared error and mean absolute error. However, in deep learning, neurons of the last layer are usually activated by a sigmoid or softmax function. Thus, training with traditional losses would cause lower efficiency and accuracy. Recently, designing loss functions for deep learning methods has become one of the most challenging problems. This paper provides a comprehensive review of the recent progress and frontiers about loss functions in deep learning, especially for computer vision tasks. Specifically, we discuss the loss functions in three main computer vision tasks, i.e., object detection, face recognition, and image segmentation. Scholars have proposed several novel loss functions to cope with the specific problems such as imbalanced data, uncertain distribution of the predicted bounding boxes, varied overlapped mode between two bounding boxes and over-fitting. The survey details the source, derivation, and properties of each loss function. Furthermore, we also provide some advanced challenges about robust losses, generative adversarial networks, noise-tolerant losses, and semantic data augmentation. Finally, we deliver a summary and some promising future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
53秒前
howgoods完成签到 ,获得积分10
56秒前
蓝色的纪念完成签到,获得积分10
1分钟前
科研通AI6应助djh采纳,获得10
1分钟前
风笛完成签到 ,获得积分10
1分钟前
麻辣鸡丝发布了新的文献求助10
1分钟前
麻辣鸡丝完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
陀思妥耶夫斯基完成签到 ,获得积分10
3分钟前
cy0824完成签到 ,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
4分钟前
馆长应助Echopotter采纳,获得30
4分钟前
祁问儿完成签到 ,获得积分10
4分钟前
5分钟前
Ryu发布了新的文献求助10
5分钟前
读研霹雳完成签到 ,获得积分10
5分钟前
zqy99723发布了新的文献求助10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
馆长应助霖_赤采纳,获得10
6分钟前
小丸子和zz完成签到 ,获得积分10
6分钟前
6分钟前
leo0531完成签到 ,获得积分10
6分钟前
6分钟前
馆长举报杨芯求助涉嫌违规
6分钟前
坚果完成签到,获得积分10
6分钟前
忧郁小鸽子完成签到,获得积分10
7分钟前
伏城完成签到 ,获得积分10
7分钟前
7分钟前
量子星尘发布了新的文献求助20
7分钟前
昂帕帕斯完成签到,获得积分10
7分钟前
level完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4983816
求助须知:如何正确求助?哪些是违规求助? 4234926
关于积分的说明 13189549
捐赠科研通 4027370
什么是DOI,文献DOI怎么找? 2203142
邀请新用户注册赠送积分活动 1215389
关于科研通互助平台的介绍 1132579