Recent advances on loss functions in deep learning for computer vision

计算机科学 人工智能 深度学习 Softmax函数 机器学习 跳跃式监视 功能(生物学) 人工神经网络 生物 进化生物学
作者
Yingjie Tian,Duo Su,Stanislao Lauria,Xiaohui Liu
出处
期刊:Neurocomputing [Elsevier]
卷期号:497: 129-158 被引量:84
标识
DOI:10.1016/j.neucom.2022.04.127
摘要

The loss function, also known as cost function, is used for training a neural network or other machine learning models. Over the past decade, researchers have designed many loss functions for machine learning, such as mean squared error and mean absolute error. However, in deep learning, neurons of the last layer are usually activated by a sigmoid or softmax function. Thus, training with traditional losses would cause lower efficiency and accuracy. Recently, designing loss functions for deep learning methods has become one of the most challenging problems. This paper provides a comprehensive review of the recent progress and frontiers about loss functions in deep learning, especially for computer vision tasks. Specifically, we discuss the loss functions in three main computer vision tasks, i.e., object detection, face recognition, and image segmentation. Scholars have proposed several novel loss functions to cope with the specific problems such as imbalanced data, uncertain distribution of the predicted bounding boxes, varied overlapped mode between two bounding boxes and over-fitting. The survey details the source, derivation, and properties of each loss function. Furthermore, we also provide some advanced challenges about robust losses, generative adversarial networks, noise-tolerant losses, and semantic data augmentation. Finally, we deliver a summary and some promising future research directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
咸鱼发布了新的文献求助10
3秒前
李存发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
8R60d8完成签到,获得积分0
5秒前
SJJ应助满意青筠采纳,获得10
6秒前
小波波波完成签到,获得积分10
7秒前
8秒前
飞飞鱼完成签到,获得积分10
8秒前
水云身完成签到,获得积分10
8秒前
Csy发布了新的文献求助20
8秒前
adamchris发布了新的文献求助30
9秒前
邹友亮完成签到,获得积分10
10秒前
55发布了新的文献求助10
11秒前
12秒前
12秒前
鱼莉完成签到,获得积分10
12秒前
13秒前
华仔应助李存采纳,获得10
15秒前
15秒前
16秒前
17秒前
李健的小迷弟应助Eric采纳,获得10
18秒前
CCC发布了新的文献求助10
20秒前
汉堡包应助cara33采纳,获得10
22秒前
脑洞疼应助lumei661314采纳,获得10
22秒前
23秒前
今后应助忧郁的鱿鱼采纳,获得10
23秒前
24秒前
24秒前
生动友容发布了新的文献求助10
24秒前
露露露完成签到,获得积分10
25秒前
26秒前
ppwq完成签到 ,获得积分10
26秒前
华仔应助seven采纳,获得10
26秒前
香蕉觅云应助LEMON采纳,获得10
27秒前
纪震宇发布了新的文献求助10
27秒前
生动娩发布了新的文献求助10
27秒前
阳光雨完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599407
求助须知:如何正确求助?哪些是违规求助? 4685010
关于积分的说明 14837502
捐赠科研通 4668037
什么是DOI,文献DOI怎么找? 2537906
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783