Recent advances on loss functions in deep learning for computer vision

计算机科学 人工智能 深度学习 Softmax函数 机器学习 跳跃式监视 功能(生物学) 人工神经网络 生物 进化生物学
作者
Yingjie Tian,Duo Su,Stanislao Lauria,Xiaohui Liu
出处
期刊:Neurocomputing [Elsevier]
卷期号:497: 129-158 被引量:59
标识
DOI:10.1016/j.neucom.2022.04.127
摘要

The loss function, also known as cost function, is used for training a neural network or other machine learning models. Over the past decade, researchers have designed many loss functions for machine learning, such as mean squared error and mean absolute error. However, in deep learning, neurons of the last layer are usually activated by a sigmoid or softmax function. Thus, training with traditional losses would cause lower efficiency and accuracy. Recently, designing loss functions for deep learning methods has become one of the most challenging problems. This paper provides a comprehensive review of the recent progress and frontiers about loss functions in deep learning, especially for computer vision tasks. Specifically, we discuss the loss functions in three main computer vision tasks, i.e., object detection, face recognition, and image segmentation. Scholars have proposed several novel loss functions to cope with the specific problems such as imbalanced data, uncertain distribution of the predicted bounding boxes, varied overlapped mode between two bounding boxes and over-fitting. The survey details the source, derivation, and properties of each loss function. Furthermore, we also provide some advanced challenges about robust losses, generative adversarial networks, noise-tolerant losses, and semantic data augmentation. Finally, we deliver a summary and some promising future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
hedianmoony完成签到,获得积分20
2秒前
jou完成签到,获得积分10
3秒前
明亮寒安完成签到,获得积分10
3秒前
西皮发布了新的文献求助10
5秒前
wanci应助111采纳,获得10
7秒前
小吴完成签到,获得积分20
7秒前
desperate完成签到,获得积分20
7秒前
小蘑菇应助妞妞月采纳,获得10
7秒前
赘婿应助汎影采纳,获得10
9秒前
10秒前
宁小满完成签到,获得积分10
10秒前
深情安青应助西皮采纳,获得10
11秒前
心心哈发布了新的文献求助10
12秒前
冷酷的又亦完成签到 ,获得积分20
13秒前
13秒前
14秒前
资幻枫完成签到,获得积分10
14秒前
周周发布了新的文献求助10
16秒前
yyz应助phw2333采纳,获得30
16秒前
sansronds完成签到,获得积分10
16秒前
17秒前
资幻枫发布了新的文献求助10
17秒前
JhShang完成签到,获得积分10
18秒前
111发布了新的文献求助10
18秒前
18秒前
善学以致用应助汎影采纳,获得10
19秒前
负责的千易完成签到,获得积分20
19秒前
充电宝应助whoknowsname采纳,获得10
20秒前
21秒前
22秒前
南北发布了新的文献求助10
22秒前
22秒前
文艺鞋垫关注了科研通微信公众号
24秒前
25秒前
Forward完成签到,获得积分10
25秒前
取什么好呢应助曼粒子采纳,获得10
25秒前
科研通AI2S应助汎影采纳,获得10
27秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138230
求助须知:如何正确求助?哪些是违规求助? 2789160
关于积分的说明 7790351
捐赠科研通 2445545
什么是DOI,文献DOI怎么找? 1300521
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046