Regional soil organic matter mapping models based on the optimal time window, feature selection algorithm and Google Earth Engine

特征选择 特征(语言学) 随机森林 均方误差 遥感 环境科学 计算机科学 领域(数学) 数学 人工智能 统计 地质学 语言学 哲学 纯数学
作者
Chong Luo,Xinle Zhang,Yihao Wang,Zhibo Men,Huanjun Liu
出处
期刊:Soil & Tillage Research [Elsevier BV]
卷期号:219: 105325-105325 被引量:46
标识
DOI:10.1016/j.still.2022.105325
摘要

The spatial distribution of soil organic matter (SOM) is highly significant to the assessment of the regional carbon balance, food security and cultivated land quality. Due to climate change and the increasing food demand, the intensity of cultivated land development in the Northeast China black soil region is increasing, and it is urgent to accurately map the SOM content in this region. Remote sensing technology has been widely applied in the field of soil mapping, but large-scale and high-precision soil mapping remains a significant challenge. In this study, the Google Earth Engine (GEE) platform is adopted to generate synthetic soil images based on Landsat-8 and Sentinel-2 images capturing bare soil periods at 20-d intervals. Then, the spectral index and band are adopted as input variables to evaluate the prediction accuracy of these synthetic images depicting different periods using random forest (RF) regression. Finally, two feature selection methods (Boruta and recursive feature elimination (RFE)) are employed to evaluate the performance of these two methods. The results indicate that 1) the optimal time window for SOM prediction is day of year (DOY) 120–140 for the Songnen Plain; 2) the performance of SOM prediction based on Landsat-8 synthetic images is better than that based on Sentinel-2 synthetic images; and 3) both feature selection methods improve the SOM prediction accuracy, but RFE has the highest accuracy(Landsat-8 with Coefficient of Determination (R2) of 0.702, Root Mean Square Error (RMSE) of 0.681%; Sentinel-2 with R2 of 0.5963, RMSE of 0.793%). This study provides a new model for large-scale and high-spatial resolution SOM prediction and verifies the importance of the time window to the SOM prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang完成签到,获得积分10
刚刚
Feng完成签到,获得积分10
刚刚
lalafish应助快乐汉堡采纳,获得50
刚刚
Jerry完成签到,获得积分10
刚刚
科研小白发布了新的文献求助10
刚刚
sss312完成签到,获得积分10
2秒前
狸宝的小果子完成签到 ,获得积分10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
热气球应助科研通管家采纳,获得10
2秒前
wangling2333应助科研通管家采纳,获得10
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
wangling2333应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
3秒前
bxyyy应助稳重的秋天采纳,获得10
3秒前
4秒前
5秒前
6秒前
6秒前
科研小白完成签到,获得积分20
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
红红完成签到,获得积分10
9秒前
柔弱熊猫完成签到 ,获得积分10
9秒前
雯茜发布了新的文献求助30
10秒前
YFH发布了新的文献求助10
10秒前
hooke发布了新的文献求助10
11秒前
李大帅完成签到,获得积分10
11秒前
12秒前
liny完成签到 ,获得积分10
13秒前
安尔完成签到,获得积分10
13秒前
welchm完成签到,获得积分10
14秒前
14秒前
Zkxxxx应助jianlv采纳,获得10
14秒前
Jenny完成签到,获得积分20
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958282
求助须知:如何正确求助?哪些是违规求助? 3504444
关于积分的说明 11118494
捐赠科研通 3235770
什么是DOI,文献DOI怎么找? 1788433
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582