Regional soil organic matter mapping models based on the optimal time window, feature selection algorithm and Google Earth Engine

特征选择 特征(语言学) 随机森林 均方误差 遥感 环境科学 计算机科学 领域(数学) 数学 人工智能 统计 地质学 语言学 哲学 纯数学
作者
Chong Luo,Xinle Zhang,Yihao Wang,Zhibo Men,Huanjun Liu
出处
期刊:Soil & Tillage Research [Elsevier]
卷期号:219: 105325-105325 被引量:46
标识
DOI:10.1016/j.still.2022.105325
摘要

The spatial distribution of soil organic matter (SOM) is highly significant to the assessment of the regional carbon balance, food security and cultivated land quality. Due to climate change and the increasing food demand, the intensity of cultivated land development in the Northeast China black soil region is increasing, and it is urgent to accurately map the SOM content in this region. Remote sensing technology has been widely applied in the field of soil mapping, but large-scale and high-precision soil mapping remains a significant challenge. In this study, the Google Earth Engine (GEE) platform is adopted to generate synthetic soil images based on Landsat-8 and Sentinel-2 images capturing bare soil periods at 20-d intervals. Then, the spectral index and band are adopted as input variables to evaluate the prediction accuracy of these synthetic images depicting different periods using random forest (RF) regression. Finally, two feature selection methods (Boruta and recursive feature elimination (RFE)) are employed to evaluate the performance of these two methods. The results indicate that 1) the optimal time window for SOM prediction is day of year (DOY) 120–140 for the Songnen Plain; 2) the performance of SOM prediction based on Landsat-8 synthetic images is better than that based on Sentinel-2 synthetic images; and 3) both feature selection methods improve the SOM prediction accuracy, but RFE has the highest accuracy(Landsat-8 with Coefficient of Determination (R2) of 0.702, Root Mean Square Error (RMSE) of 0.681%; Sentinel-2 with R2 of 0.5963, RMSE of 0.793%). This study provides a new model for large-scale and high-spatial resolution SOM prediction and verifies the importance of the time window to the SOM prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jennifer完成签到,获得积分20
刚刚
顺心怀柔关注了科研通微信公众号
1秒前
1秒前
1秒前
JJ完成签到,获得积分10
2秒前
2秒前
2秒前
生动的冰蓝完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
白踏歌发布了新的文献求助20
3秒前
4秒前
摆烂的实验室打工人完成签到,获得积分10
4秒前
小小蜗牛完成签到,获得积分10
5秒前
5秒前
吴媛媛完成签到 ,获得积分10
5秒前
三千发布了新的文献求助10
5秒前
Owen应助Lu采纳,获得10
6秒前
英俊的铭应助大海采纳,获得10
6秒前
6秒前
小前途发布了新的文献求助10
7秒前
断水断粮的科研民工完成签到,获得积分10
7秒前
7秒前
所所应助jennifer采纳,获得10
8秒前
炎炎夏无声完成签到 ,获得积分10
8秒前
8秒前
lilymozi完成签到,获得积分10
8秒前
喵喵盖被应助yydsyyd采纳,获得10
9秒前
卡卡发布了新的文献求助10
9秒前
9秒前
9秒前
jiabu完成签到,获得积分10
9秒前
要苦就苦别人完成签到,获得积分10
9秒前
香蕉觅云应助白踏歌采纳,获得10
10秒前
10秒前
张张张完成签到 ,获得积分10
11秒前
pragmatic完成签到,获得积分10
11秒前
李焕弟发布了新的文献求助10
11秒前
Maestro_S发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299039
求助须知:如何正确求助?哪些是违规求助? 2934095
关于积分的说明 8466867
捐赠科研通 2607468
什么是DOI,文献DOI怎么找? 1423751
科研通“疑难数据库(出版商)”最低求助积分说明 661677
邀请新用户注册赠送积分活动 645327