Exploring zoning scenario impacts upon urban growth simulations using a dynamic spatial model

分区 成长管理 城市规划 城市蔓延 细分 土地利用 细胞自动机 计算机科学 土地利用规划 城市密度 环境规划 地理 环境资源管理 环境科学 土木工程 人工智能 工程类 考古
作者
Haiwei Yin,Fanhua Kong,Xiaojun Yang,Philip James,Iryna Dronova
出处
期刊:Cities [Elsevier]
卷期号:81: 214-229 被引量:41
标识
DOI:10.1016/j.cities.2018.04.010
摘要

Dynamic spatial models are being increasingly used to explore urban changes and evaluate the social and environmental consequences of urban growth. However, inadequate representation of spatial complexity, regional differentiation, and growth management policies can result in urban models with a high overall prediction accuracy but low pixel-matching precision. Correspondingly, improving urban growth prediction accuracy and reliability has become an important area of research in geographic information science and applied urban studies. This work focuses on exploring the potential impacts of zoning on urban growth simulations. Although the coding of land-use types into distinct zones is an important growth management strategy, it has not been adequately addressed in urban modeling practices. In this study, we developed a number of zoning schemes and examined their impacts on urban growth predictions using a cellular automaton-based dynamic spatial model. Using the city of Jinan, a fast-growing large metropolis in China, as the study site, five zoning scenarios were designed: no zoning (S0), zoning based on land-use type (S1), zoning based on urbanized suitability (S2), zoning based on administrative division (S3), and zoning based on development planning subdivision (S4). Under these scenarios, growth was simulated and the respective prediction accuracies and projected patterns were evaluated against observed urban patterns derived from remote sensing. It was found that zoning can affect prediction accuracy and projected urbanized patterns, with the zoning scenarios taking spatial differentiation of planning policies into account (i.e., S2–4) generating better predictions of newly urbanized pixels, better representing urban clustered development, and boosting the level of spatial matching relative to zoning by land-use type (S1). The novelty of this work lies in its design of specific zoning scenarios based on spatial differentiation and growth management policies and in its insight into the impacts of various zoning scenarios on urban growth simulation. These findings indicate opportunities for the more accurate projection of urban pattern growth through the use of dynamic models with appropriately designed zoning scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助单复天采纳,获得10
刚刚
刚刚
1秒前
阿六儿发布了新的文献求助10
1秒前
1秒前
动听小小发布了新的文献求助10
1秒前
hldf完成签到,获得积分10
1秒前
超级的溪灵完成签到 ,获得积分10
1秒前
可燃斌完成签到,获得积分10
2秒前
我嘞个豆发布了新的文献求助10
2秒前
2秒前
好好学习的小学生完成签到,获得积分10
2秒前
3秒前
南山鹤完成签到,获得积分10
3秒前
聪明无敌小腚宝完成签到,获得积分10
3秒前
3秒前
tiger发布了新的文献求助10
4秒前
4秒前
任成艳发布了新的文献求助10
4秒前
微醺小王发布了新的文献求助10
5秒前
5秒前
南山鹤发布了新的文献求助10
5秒前
思源应助李盛男采纳,获得10
5秒前
5秒前
5秒前
Rain发布了新的文献求助10
6秒前
6秒前
Kaz完成签到,获得积分10
6秒前
sansronds完成签到,获得积分10
7秒前
7秒前
鲤鱼寒荷发布了新的文献求助10
7秒前
糖糖发布了新的文献求助10
8秒前
Dreamable发布了新的文献求助10
8秒前
Muller完成签到,获得积分10
8秒前
hugo发布了新的文献求助10
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587292
求助须知:如何正确求助?哪些是违规求助? 4670431
关于积分的说明 14782816
捐赠科研通 4622441
什么是DOI,文献DOI怎么找? 2531237
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066