Exploring zoning scenario impacts upon urban growth simulations using a dynamic spatial model

分区 成长管理 城市规划 城市蔓延 细分 土地利用 细胞自动机 计算机科学 土地利用规划 城市密度 环境规划 地理 环境资源管理 环境科学 土木工程 人工智能 工程类 考古
作者
Haiwei Yin,Fanhua Kong,Xiaojun Yang,Philip James,Iryna Dronova
出处
期刊:Cities [Elsevier BV]
卷期号:81: 214-229 被引量:41
标识
DOI:10.1016/j.cities.2018.04.010
摘要

Dynamic spatial models are being increasingly used to explore urban changes and evaluate the social and environmental consequences of urban growth. However, inadequate representation of spatial complexity, regional differentiation, and growth management policies can result in urban models with a high overall prediction accuracy but low pixel-matching precision. Correspondingly, improving urban growth prediction accuracy and reliability has become an important area of research in geographic information science and applied urban studies. This work focuses on exploring the potential impacts of zoning on urban growth simulations. Although the coding of land-use types into distinct zones is an important growth management strategy, it has not been adequately addressed in urban modeling practices. In this study, we developed a number of zoning schemes and examined their impacts on urban growth predictions using a cellular automaton-based dynamic spatial model. Using the city of Jinan, a fast-growing large metropolis in China, as the study site, five zoning scenarios were designed: no zoning (S0), zoning based on land-use type (S1), zoning based on urbanized suitability (S2), zoning based on administrative division (S3), and zoning based on development planning subdivision (S4). Under these scenarios, growth was simulated and the respective prediction accuracies and projected patterns were evaluated against observed urban patterns derived from remote sensing. It was found that zoning can affect prediction accuracy and projected urbanized patterns, with the zoning scenarios taking spatial differentiation of planning policies into account (i.e., S2–4) generating better predictions of newly urbanized pixels, better representing urban clustered development, and boosting the level of spatial matching relative to zoning by land-use type (S1). The novelty of this work lies in its design of specific zoning scenarios based on spatial differentiation and growth management policies and in its insight into the impacts of various zoning scenarios on urban growth simulation. These findings indicate opportunities for the more accurate projection of urban pattern growth through the use of dynamic models with appropriately designed zoning scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助哇哦采纳,获得10
1秒前
1秒前
Hello应助肖的花园采纳,获得10
1秒前
学术垃圾发布了新的文献求助10
2秒前
酷波er应助nano采纳,获得30
2秒前
海岸线完成签到,获得积分10
2秒前
糊涂涂完成签到,获得积分10
3秒前
超级的之柔完成签到 ,获得积分10
3秒前
芋头cc发布了新的文献求助30
4秒前
Orange应助迷人问兰采纳,获得10
5秒前
5秒前
CH发布了新的文献求助10
5秒前
zz发布了新的文献求助10
5秒前
5秒前
5秒前
老默发布了新的文献求助10
5秒前
weijie完成签到,获得积分10
5秒前
5秒前
6秒前
斯文败类应助清漪采纳,获得10
6秒前
leslieo3o完成签到,获得积分10
7秒前
7秒前
7秒前
ddd完成签到,获得积分10
7秒前
7秒前
8秒前
啦啦咔嘞发布了新的文献求助10
8秒前
蛋挞完成签到,获得积分10
8秒前
星辰大海应助jjj采纳,获得10
9秒前
9秒前
Advance.Cheng完成签到,获得积分10
9秒前
学术垃圾完成签到,获得积分10
10秒前
10秒前
yar应助生动的初柳采纳,获得10
10秒前
源源元发布了新的文献求助10
10秒前
11秒前
黎笙完成签到,获得积分10
11秒前
壮观的擎发布了新的文献求助10
11秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785