Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield

钙钛矿(结构) 光致发光 量子点 材料科学 量子产额 产量(工程) 发光 相(物质) 纳米技术 光电子学 荧光 化学 结晶学 物理 量子力学 冶金
作者
Feng Liu,Yaohong Zhang,Chao Ding,Syuusuke Kobayashi,Takuya Izuishi,Naoki Nakazawa,Taro Toyoda,Tsuyoshi Ohta,Shuzi Hayase,Takashi Minemoto,Kenji Yoshino,Songyuan Dai,Qing Shen
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (10): 10373-10383 被引量:812
标识
DOI:10.1021/acsnano.7b05442
摘要

Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals have gained significant attention for both fundamental research and commercial applications owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality is of crucial importance. However, like most common QD systems such as CdSe and PbS, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental nonradiative recombination centers and thus quenching luminescence. In this paper, we show that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects. This is realized with our improved synthetic protocol that involves introducing organolead compound trioctylphosphine–PbI2 (TOP–PbI2) as the reactive precursor, which also leads to a significantly improved stability for the resulting CsPbI3 QD solutions. Ultrafast kinetic analysis with time-resolved transient absorption spectroscopy evidence the negligible electron or hole-trapping pathways in our QDs, which explains such a high quantum efficiency. We expect the successful synthesis of the "ideal" perovskite QDs will exert profound influence on their applications to both QD-based light-harvesting and -emitting devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
时米米米发布了新的文献求助10
刚刚
马保国发布了新的文献求助10
1秒前
太酷啦啦啦完成签到,获得积分10
1秒前
1秒前
lhc完成签到,获得积分10
1秒前
2秒前
大个应助杨扬洋采纳,获得10
3秒前
云ye完成签到,获得积分10
3秒前
黄子芮发布了新的文献求助10
4秒前
fate完成签到,获得积分10
4秒前
陈峰琦发布了新的文献求助10
4秒前
Hello应助桑榆未晚采纳,获得10
5秒前
古古怪界丶黑大帅完成签到,获得积分10
5秒前
Owen应助April采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
dara997发布了新的文献求助10
6秒前
LUMOS完成签到,获得积分10
7秒前
当当发布了新的文献求助10
8秒前
zyt完成签到,获得积分10
8秒前
8秒前
8秒前
Crw__发布了新的文献求助10
9秒前
小蘑菇应助马保国采纳,获得10
9秒前
楠木发布了新的文献求助10
9秒前
科研通AI6应助shirleeyeahe采纳,获得10
9秒前
9秒前
深情千雁完成签到,获得积分10
9秒前
折木浮华发布了新的文献求助20
10秒前
10秒前
失眠的莫英完成签到,获得积分10
10秒前
chenjingru发布了新的文献求助10
10秒前
11秒前
朴实之玉完成签到 ,获得积分10
11秒前
可爱的友容完成签到,获得积分10
12秒前
李健应助fan采纳,获得10
13秒前
大模型应助李山鬼采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473080
求助须知:如何正确求助?哪些是违规求助? 4575340
关于积分的说明 14352162
捐赠科研通 4502782
什么是DOI,文献DOI怎么找? 2467352
邀请新用户注册赠送积分活动 1455285
关于科研通互助平台的介绍 1429321