Generative adversarial networks: introduction and outlook

对抗制 生成语法 鉴别器 光学(聚焦) 发电机(电路理论) 关系(数据库) 计算机科学 人工智能 理论计算机科学 机器学习 数据挖掘 电信 探测器 光学 物理 功率(物理) 量子力学
作者
Kunfeng Wang,Chao Gou,Yanjie Duan,Yilun Lin,Xinhu Zheng,Fei–Yue Wang
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:4 (4): 588-598 被引量:553
标识
DOI:10.1109/jas.2017.7510583
摘要

Recently, generative adversarial networks U+0028 GANs U+0029 have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea. The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution. Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs U+02BC proposal background, theoretic and implementation models, and application fields. Then, we discuss GANs U+02BC advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence, with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想说完成签到,获得积分10
1秒前
华仔应助solar@2030采纳,获得10
1秒前
1秒前
彭于彦祖应助欢呼的夏山采纳,获得100
2秒前
李健应助无辜的忘幽采纳,获得10
2秒前
3秒前
3秒前
yun尘世发布了新的文献求助10
4秒前
完美巧凡发布了新的文献求助10
4秒前
5秒前
华子的五A替身完成签到,获得积分10
5秒前
在水一方应助王萌茹采纳,获得10
5秒前
希望天下0贩的0应助Iwan采纳,获得10
5秒前
大个应助Luckqi6688采纳,获得10
6秒前
wlq发布了新的文献求助10
6秒前
7秒前
7秒前
斯文败类应助FIGGIEKIO采纳,获得10
7秒前
英姑应助小雒雒采纳,获得10
8秒前
8秒前
8秒前
现实的日记本完成签到,获得积分10
9秒前
畅快的鹏涛完成签到 ,获得积分10
9秒前
9秒前
英俊的铭应助link采纳,获得10
9秒前
9秒前
10秒前
10秒前
江山木发布了新的文献求助10
10秒前
11秒前
ww发布了新的文献求助30
11秒前
12秒前
郭mm发布了新的文献求助10
12秒前
12秒前
12秒前
Ava应助这小猪真帅采纳,获得10
13秒前
133完成签到,获得积分10
13秒前
专注发布了新的文献求助20
13秒前
...发布了新的文献求助10
14秒前
背后海亦应助氨甲酰磷酸采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958850
求助须知:如何正确求助?哪些是违规求助? 3505102
关于积分的说明 11122496
捐赠科研通 3236558
什么是DOI,文献DOI怎么找? 1788899
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802794