表观遗传学
组蛋白甲基转移酶
组蛋白甲基化
组蛋白密码
染色质
组蛋白
生物
组蛋白修饰酶
组蛋白H2A
癌症表观遗传学
脱甲基酶
表观遗传学
细胞生物学
染色质重塑
组蛋白H1
遗传学
DNA甲基化
DNA
核小体
基因表达
基因
作者
Fade Gong,Kyle M. Miller
标识
DOI:10.1016/j.mrrev.2017.09.003
摘要
Preserving genome function and stability are paramount for ensuring cellular homeostasis, an imbalance in which can promote diseases including cancer. In the presence of DNA lesions, cells activate pathways referred to as the DNA damage response (DDR). As nuclear DNA is bound by histone proteins and organized into chromatin in eukaryotes, DDR pathways have evolved to sense, signal and repair DNA damage within the chromatin environment. Histone proteins, which constitute the building blocks of chromatin, are highly modified by post-translational modifications (PTMs) that regulate chromatin structure and function. An essential histone PTM involved in the DDR is histone methylation, which is regulated by histone methyltransferase (HMT) and histone demethylase (HDM) enzymes that add and remove methyl groups on lysine and arginine residues within proteins respectively. Methylated histones can alter how proteins interact with chromatin, including their ability to be bound by reader proteins that recognize these PTMs. Here, we review histone methylation in the context of the DDR, focusing on DNA double-strand breaks (DSBs), a particularly toxic lesion that can trigger genome instability and cell death. We provide a comprehensive overview of histone methylation changes that occur in response to DNA damage and how the enzymes and reader proteins of these marks orchestrate the DDR. Finally, as many epigenetic pathways including histone methylation are altered in cancer, we discuss the potential involvement of these pathways in the etiology and treatment of this disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI