Post Mortem Interval: Necrobiome Analysis Using Artificial Neural Networks

人工神经网络 功能(生物学) 区间(图论) 计算机科学 有机体 生物系统 变量(数学) 死亡时间 人工智能 生物 数学 毒理 进化生物学 组合数学 数学分析 古生物学
作者
Abdelhalim Khenchouche
出处
期刊:Computational biology and bioinformatics [Science Publishing Group]
卷期号:5 (6): 90-90 被引量:2
标识
DOI:10.11648/j.cbb.20170506.13
摘要

Aims: In criminal investigations, it is necessary to determine the date and time of the death of a person.Different techniques are used.In this study, we try to analyze the necrobioma that characterizes all the bacteria that populate a corpse.It would be necessary to determine which bacteria first inhabit a dead organism?Which bodies are the first organs to be affected?Which microorganisms will tend to multiply post-mortem?How to establish a dynamics of bacterial diffusion and an occupation gradient according to the moment of death?Several factors are involved in this dynamic.Mathematical modeling becomes very complex.In this study, we propose an intelligent system to predict the exact date of death of the number and species found at time (t).Materials and Methods: The purpose is to determine and enumerate the bacterial colonies in the study organ.Establish the bacterial dynamics as a function of time.In this study, an artificial neural network is established.The input variables are bacterial species, their growth rates, growth conditions (temperature, humidity, soil type, and bacterial species).The rate of bacterial species in specified organ is considered as output variable.The time taken for a bacterial species to reach this rate under defined conditions determines the date of death of the person.Results: Since input variables are considered complex, uncertain, an artificial neural network demonstrates its ability to solve such complexity.After the learning phase of the network from the real data, this creates a function of correspondence between the space of inputs and output.The established system makes it possible to instantly read the time elapsed after death from the introduction of the random values at the input with the maximum precision.The proposed system remains extensible to enter variables that may have an effect on the output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助温柔的梦露采纳,获得10
刚刚
1秒前
1秒前
可爱的函函应助8023采纳,获得10
2秒前
3秒前
yemuzhiyi发布了新的文献求助10
3秒前
4秒前
落尘完成签到,获得积分10
4秒前
xy完成签到 ,获得积分10
5秒前
juan发布了新的文献求助10
5秒前
深情安青应助infognet采纳,获得10
5秒前
6秒前
6秒前
6秒前
NancyDee完成签到,获得积分10
6秒前
一一应助MingqingFang采纳,获得100
7秒前
猪肉水饺发布了新的文献求助10
7秒前
24601完成签到,获得积分20
7秒前
烟花应助图图不秃采纳,获得10
7秒前
小二郎应助图图不秃采纳,获得10
8秒前
8秒前
酷波er应助图图不秃采纳,获得10
8秒前
烟花应助图图不秃采纳,获得10
8秒前
星辰大海应助图图不秃采纳,获得30
8秒前
天天快乐应助图图不秃采纳,获得10
8秒前
ceeray23应助图图不秃采纳,获得10
8秒前
科目三应助图图不秃采纳,获得10
8秒前
深情安青应助图图不秃采纳,获得10
8秒前
求求啦发布了新的文献求助10
10秒前
儒雅沛凝发布了新的文献求助10
10秒前
泡沫发布了新的文献求助10
11秒前
科研通AI2S应助BruceKKKK采纳,获得10
11秒前
antonx应助BruceKKKK采纳,获得30
11秒前
nani026完成签到,获得积分10
12秒前
大个应助靖123456采纳,获得10
12秒前
12秒前
13秒前
13秒前
ceeray23应助灬卍冉采纳,获得10
13秒前
XUT_MZX发布了新的文献求助10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454862
求助须知:如何正确求助?哪些是违规求助? 3050097
关于积分的说明 9020280
捐赠科研通 2738771
什么是DOI,文献DOI怎么找? 1502291
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693159