In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models

数量结构-活动关系 生物信息学 适用范围 分子描述符 厕所 试验装置 预测建模 交叉验证 训练集 药物发现 机器学习 集合(抽象数据类型) 人血浆 计算机科学 化学 人工智能 计算生物学 生物系统 色谱法 生物 生物化学 基因 程序设计语言
作者
Lixia Sun,Hong-Chang Yang,Jie Li,Tianduanyi Wang,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:ChemMedChem [Wiley]
卷期号:13 (6): 572-581 被引量:55
标识
DOI:10.1002/cmdc.201700582
摘要

Plasma protein binding (PPB) is a significant pharmacokinetic property of compounds in drug discovery and design. Due to the high cost and time-consuming nature of experimental assays, in silico approaches have been developed to assess the binding profiles of chemicals. However, because of unambiguity and the lack of uniform experimental data, most available predictive models are far from satisfactory. In this study, an elaborately curated training set containing 967 diverse pharmaceuticals with plasma-protein-bound fractions (fb ) was used to construct quantitative structure-activity relationship (QSAR) models by six machine learning algorithms with 26 molecular descriptors. Furthermore, we combined all of the individual learners to yield consensus prediction, marginally improving the accuracy of the consensus model. The model performance was estimated by tenfold cross validation and three external validation sets comprising 242 pharmaceutical, 397 industrial, and 231 newly designed chemicals, respectively. The models showed excellent performance for the entire test set, with mean absolute error (MAE) ranging from 0.126 to 0.178, demonstrating that our models could be used by a chemist when drawing a molecular structure from scratch. Meanwhile, structural descriptors contributing significantly to the predictive power of the models were related to the binding mechanisms, and the trend in terms of their effects on PPB can serve as guidance for the structural modification of chemicals. The applicability domain was also defined to distinguish favorable predictions from unfavorable predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖糖唐发布了新的文献求助10
1秒前
不配.应助科研柠檬精酸酸采纳,获得10
2秒前
wr08281发布了新的文献求助10
3秒前
魁梧的小霸王完成签到,获得积分10
4秒前
5秒前
咖啡豆应助wodetaiyangLLL采纳,获得20
5秒前
元谷雪应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
serein应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
7秒前
IAMXC发布了新的文献求助10
8秒前
9秒前
wr08281完成签到,获得积分10
13秒前
xuyan发布了新的文献求助10
15秒前
小马甲应助动听帆布鞋采纳,获得10
16秒前
刘步遥发布了新的文献求助10
17秒前
Hyl完成签到 ,获得积分10
18秒前
浮浮完成签到,获得积分10
20秒前
21秒前
21秒前
23秒前
兽医12138完成签到 ,获得积分10
23秒前
科研通AI2S应助卤蛋红采纳,获得10
24秒前
25秒前
NexusExplorer应助优秀的枫叶采纳,获得10
26秒前
憨憨发布了新的文献求助10
27秒前
27秒前
27秒前
27秒前
勤奋的铃铛完成签到,获得积分10
27秒前
29秒前
木木发布了新的文献求助10
29秒前
kiki完成签到,获得积分10
33秒前
S-Lab Sonic发布了新的文献求助10
34秒前
34秒前
月yue完成签到,获得积分10
35秒前
心平气和完成签到,获得积分10
35秒前
搜集达人应助顺利毕业采纳,获得10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143769
求助须知:如何正确求助?哪些是违规求助? 2795306
关于积分的说明 7814169
捐赠科研通 2451255
什么是DOI,文献DOI怎么找? 1304400
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413