亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models

数量结构-活动关系 生物信息学 适用范围 分子描述符 厕所 试验装置 预测建模 交叉验证 训练集 药物发现 机器学习 集合(抽象数据类型) 人血浆 计算机科学 化学 人工智能 计算生物学 生物系统 色谱法 生物 生物化学 基因 程序设计语言
作者
Lixia Sun,Hong-Chang Yang,Jie Li,Tianduanyi Wang,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:ChemMedChem [Wiley]
卷期号:13 (6): 572-581 被引量:55
标识
DOI:10.1002/cmdc.201700582
摘要

Plasma protein binding (PPB) is a significant pharmacokinetic property of compounds in drug discovery and design. Due to the high cost and time-consuming nature of experimental assays, in silico approaches have been developed to assess the binding profiles of chemicals. However, because of unambiguity and the lack of uniform experimental data, most available predictive models are far from satisfactory. In this study, an elaborately curated training set containing 967 diverse pharmaceuticals with plasma-protein-bound fractions (fb ) was used to construct quantitative structure-activity relationship (QSAR) models by six machine learning algorithms with 26 molecular descriptors. Furthermore, we combined all of the individual learners to yield consensus prediction, marginally improving the accuracy of the consensus model. The model performance was estimated by tenfold cross validation and three external validation sets comprising 242 pharmaceutical, 397 industrial, and 231 newly designed chemicals, respectively. The models showed excellent performance for the entire test set, with mean absolute error (MAE) ranging from 0.126 to 0.178, demonstrating that our models could be used by a chemist when drawing a molecular structure from scratch. Meanwhile, structural descriptors contributing significantly to the predictive power of the models were related to the binding mechanisms, and the trend in terms of their effects on PPB can serve as guidance for the structural modification of chemicals. The applicability domain was also defined to distinguish favorable predictions from unfavorable predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程昱发布了新的文献求助10
刚刚
1秒前
范良聪完成签到,获得积分20
10秒前
寒鸦应助ycyang采纳,获得30
19秒前
一只不受管束的小狸Miao完成签到 ,获得积分10
36秒前
ycyang完成签到,获得积分20
37秒前
39秒前
丰富的凡雁完成签到,获得积分20
42秒前
ppwq发布了新的文献求助10
43秒前
Owen应助HOU采纳,获得10
46秒前
斯文败类应助丰富的凡雁采纳,获得10
50秒前
我是老大应助lulu采纳,获得10
55秒前
56秒前
58秒前
领导范儿应助科研通管家采纳,获得10
58秒前
科研通AI6应助科研通管家采纳,获得10
58秒前
小二郎应助科研通管家采纳,获得10
58秒前
Jasper应助科研通管家采纳,获得10
58秒前
充电宝应助科研通管家采纳,获得10
58秒前
HOU发布了新的文献求助10
59秒前
1分钟前
英姑应助段红琼采纳,获得10
1分钟前
无花果应助一见喜采纳,获得10
1分钟前
Tumumu发布了新的文献求助10
1分钟前
1分钟前
闹闹发布了新的文献求助10
1分钟前
1分钟前
lulu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
zeran完成签到,获得积分10
1分钟前
阉太狼发布了新的文献求助10
1分钟前
zachary009完成签到 ,获得积分10
1分钟前
Jasper应助可爱的坤采纳,获得50
1分钟前
1分钟前
爱撒娇的砖头完成签到,获得积分10
1分钟前
linuo完成签到,获得积分10
1分钟前
一见喜发布了新的文献求助10
1分钟前
完美世界应助闹闹采纳,获得10
1分钟前
古铜完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714432
求助须知:如何正确求助?哪些是违规求助? 5223970
关于积分的说明 15273294
捐赠科研通 4865856
什么是DOI,文献DOI怎么找? 2612444
邀请新用户注册赠送积分活动 1562516
关于科研通互助平台的介绍 1519799