萤火虫算法
大数据
计算机科学
水准点(测量)
最优化问题
数学优化
集合(抽象数据类型)
进化算法
元启发式
启发式
多目标优化
优化算法
萤火虫协议
算法
数学
人工智能
机器学习
数据挖掘
粒子群优化
动物
生物
程序设计语言
地理
大地测量学
作者
Hui Wang,Wenjun Wang,Laizhong Cui,Hui Sun,Jia Zhao,Yun Wang,Yu Xue
标识
DOI:10.1016/j.asoc.2017.06.029
摘要
Multi-objective evolutionary algorithms (MOEAs) have shown good performance on many benchmark and real world multi-objective optimization problems. However, MOEAs may suffer from some difficulties when solving big data optimization problems with thousands of variables. Firefly algorithm (FA) is a new meta-heuristic, which has been proved to be a good optimization tool. In this paper, we present a hybrid multi-objective FA (HMOFA) for big data optimization. A set of big data optimization problems, including six single objective problems and six multi-objective problems, are tested in the experiments. Computational results show that HMOFA achieves promising performance on all test problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI