Deep learning improves prediction of drug–drug and drug–food interactions

药物数据库 药品 药物与药物的相互作用 药物开发 计算机科学 药物重新定位 药理学 医学 机器学习 计算生物学 生物
作者
Jae Yong Ryu,Hyun Uk Kim,Sang Yup Lee
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:115 (18) 被引量:316
标识
DOI:10.1073/pnas.1803294115
摘要

Drug interactions, including drug-drug interactions (DDIs) and drug-food constituent interactions (DFIs), can trigger unexpected pharmacological effects, including adverse drug events (ADEs), with causal mechanisms often unknown. Several computational methods have been developed to better understand drug interactions, especially for DDIs. However, these methods do not provide sufficient details beyond the chance of DDI occurrence, or require detailed drug information often unavailable for DDI prediction. Here, we report development of a computational framework DeepDDI that uses names of drug-drug or drug-food constituent pairs and their structural information as inputs to accurately generate 86 important DDI types as outputs of human-readable sentences. DeepDDI uses deep neural network with its optimized prediction performance and predicts 86 DDI types with a mean accuracy of 92.4% using the DrugBank gold standard DDI dataset covering 192,284 DDIs contributed by 191,878 drug pairs. DeepDDI is used to suggest potential causal mechanisms for the reported ADEs of 9,284 drug pairs, and also predict alternative drug candidates for 62,707 drug pairs having negative health effects. Furthermore, DeepDDI is applied to 3,288,157 drug-food constituent pairs (2,159 approved drugs and 1,523 well-characterized food constituents) to predict DFIs. The effects of 256 food constituents on pharmacological effects of interacting drugs and bioactivities of 149 food constituents are predicted. These results suggest that DeepDDI can provide important information on drug prescription and even dietary suggestions while taking certain drugs and also guidelines during drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有益完成签到,获得积分10
1秒前
旺王雪饼关注了科研通微信公众号
2秒前
2秒前
激情的纲发布了新的文献求助10
2秒前
kafei完成签到,获得积分10
2秒前
SCI小能手发布了新的文献求助10
3秒前
卡卡西应助Rosaline采纳,获得30
3秒前
glaze完成签到 ,获得积分10
4秒前
majiko发布了新的文献求助10
4秒前
首席医官完成签到,获得积分10
5秒前
5秒前
云云关注了科研通微信公众号
5秒前
研友_VZG7GZ应助浅夏采纳,获得10
5秒前
6秒前
6秒前
我是老大应助JUDY采纳,获得10
7秒前
7秒前
zgdzhj发布了新的文献求助10
7秒前
8秒前
QR完成签到,获得积分10
11秒前
11秒前
12秒前
李慧颖发布了新的文献求助10
12秒前
12秒前
千跃举报王倩倩求助涉嫌违规
13秒前
13秒前
14秒前
斯文败类应助fan采纳,获得30
15秒前
16秒前
棒棒棒发布了新的文献求助10
16秒前
17秒前
我我完成签到 ,获得积分10
17秒前
QR发布了新的文献求助10
18秒前
Hello应助wzx采纳,获得10
19秒前
20秒前
沉舟完成签到 ,获得积分10
20秒前
wwx发布了新的文献求助10
20秒前
21秒前
退堂鼓发布了新的文献求助10
21秒前
caixukun发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952732
求助须知:如何正确求助?哪些是违规求助? 3498228
关于积分的说明 11090865
捐赠科研通 3228782
什么是DOI,文献DOI怎么找? 1785114
邀请新用户注册赠送积分活动 869105
科研通“疑难数据库(出版商)”最低求助积分说明 801350