Study on close-range photogrammetry without traditional self-calibration measurement model

摄影测量学 校准 摄像机切除 计算机视觉 参数化复杂度 计算机科学 失真(音乐) 准确度和精密度 人工智能 航程(航空) 摄像机自动校准 点(几何) 束流调整 匹配(统计) 数码相机 测量不确定度 数学 算法 工程类 统计 航空航天工程 放大器 计算机网络 几何学 带宽(计算)
作者
Changyu Long,Bile Wan,Zaihua Yang,Haomiao Liu,Tao Li,Guowei Ruan,Yugang Liu,Yuee Wei
标识
DOI:10.1117/12.2281984
摘要

Because of the close range photogrammetry has wide measuring range, high precision and high efficiency, the precision measurement of large size tasks take more and more important role Among them, the self-calibration measurement model based on adjustment optimization is the important reason to ensure the method to achieve high-precision measurement. However, with commercial grade SLR camera more and more applied to three-dimensional measurement, the measurement accuracy and the professional camera compared to a certain gap A large number of analyses have found that, in addition to the camera itself, the self -calibration model relies too much on the internal parameters of the camera, especially the distortion parameter, which is the important reason leading to the decrease of the measurement accuracy. In order to reduce the influence of the parameterized model on the measurement results, we propose a photogrammetric method that does not rely on the intrinsic parameters of the camera. Firstly, a non-parameterized calibration method for large field of view camera is designed by combining the perpendicular method and Zeiss calibration method. Then, the non-parameterized measurement model based on the angle information can be established after the matching of the same point and the initial value of the difference between different images. Finally, combined with adjustment optimization algorithm, the three-dimensional coordinate of the measured point in space is calculated accurately. Compared with the traditional photogrammetry results, it is proved that this method can effectively improve the photogrammetric accuracy of the large field SLR camera.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC应助sxmt123456789采纳,获得30
1秒前
1秒前
波子汽水完成签到,获得积分10
1秒前
谛因发布了新的文献求助10
1秒前
酷波er应助cc采纳,获得10
1秒前
苯酚装醇发布了新的文献求助10
1秒前
烟花应助烯灯采纳,获得10
2秒前
机智的周呵呵完成签到,获得积分10
2秒前
2秒前
2秒前
噜啦啦发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
852应助川荣李奈采纳,获得10
4秒前
4秒前
无花果应助丫丫采纳,获得30
5秒前
专注白昼应助寒月如雪采纳,获得10
5秒前
lss完成签到,获得积分10
5秒前
小柚子的傻二哥应助晨鸟采纳,获得10
5秒前
慕青应助liu95采纳,获得10
5秒前
6秒前
Weilu完成签到 ,获得积分10
6秒前
danbome完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
zhangzhangzhang完成签到,获得积分10
8秒前
rabbit完成签到,获得积分10
8秒前
8秒前
Ava应助terryok采纳,获得10
8秒前
狂野傲珊发布了新的文献求助10
9秒前
乌鸦坐飞机完成签到,获得积分10
9秒前
陈偏偏发布了新的文献求助10
9秒前
9秒前
10秒前
标致的战斗机完成签到,获得积分10
10秒前
微笑远锋完成签到,获得积分10
10秒前
追梦人2016完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531221
求助须知:如何正确求助?哪些是违规求助? 4620098
关于积分的说明 14571528
捐赠科研通 4559596
什么是DOI,文献DOI怎么找? 2498484
邀请新用户注册赠送积分活动 1478498
关于科研通互助平台的介绍 1449953