Study on close-range photogrammetry without traditional self-calibration measurement model

摄影测量学 校准 摄像机切除 计算机视觉 参数化复杂度 计算机科学 失真(音乐) 准确度和精密度 人工智能 航程(航空) 摄像机自动校准 点(几何) 束流调整 匹配(统计) 数码相机 测量不确定度 数学 算法 工程类 统计 航空航天工程 放大器 计算机网络 几何学 带宽(计算)
作者
Changyu Long,Bile Wan,Zaihua Yang,Haomiao Liu,Tao Li,Guowei Ruan,Yugang Liu,Yuee Wei
标识
DOI:10.1117/12.2281984
摘要

Because of the close range photogrammetry has wide measuring range, high precision and high efficiency, the precision measurement of large size tasks take more and more important role Among them, the self-calibration measurement model based on adjustment optimization is the important reason to ensure the method to achieve high-precision measurement. However, with commercial grade SLR camera more and more applied to three-dimensional measurement, the measurement accuracy and the professional camera compared to a certain gap A large number of analyses have found that, in addition to the camera itself, the self -calibration model relies too much on the internal parameters of the camera, especially the distortion parameter, which is the important reason leading to the decrease of the measurement accuracy. In order to reduce the influence of the parameterized model on the measurement results, we propose a photogrammetric method that does not rely on the intrinsic parameters of the camera. Firstly, a non-parameterized calibration method for large field of view camera is designed by combining the perpendicular method and Zeiss calibration method. Then, the non-parameterized measurement model based on the angle information can be established after the matching of the same point and the initial value of the difference between different images. Finally, combined with adjustment optimization algorithm, the three-dimensional coordinate of the measured point in space is calculated accurately. Compared with the traditional photogrammetry results, it is proved that this method can effectively improve the photogrammetric accuracy of the large field SLR camera.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮的亦绿完成签到 ,获得积分10
1秒前
1秒前
2秒前
万能图书馆应助江夏清采纳,获得10
2秒前
孤独卿完成签到,获得积分10
3秒前
无奈又晴发布了新的文献求助10
3秒前
传奇3应助顶顶顶顶采纳,获得10
3秒前
曈梦发布了新的文献求助10
3秒前
迷失的悠悠完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
LI完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
乐乐应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
安逸发布了新的文献求助10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
十二完成签到 ,获得积分10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
ilihe应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
超级幼旋应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
LI发布了新的文献求助10
8秒前
小猴子应助科研通管家采纳,获得10
8秒前
ilihe应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
权权xulu应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得30
9秒前
Ava应助科研通管家采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601396
求助须知:如何正确求助?哪些是违规求助? 4686922
关于积分的说明 14846724
捐赠科研通 4680979
什么是DOI,文献DOI怎么找? 2539359
邀请新用户注册赠送积分活动 1506257
关于科研通互助平台的介绍 1471293