Study on close-range photogrammetry without traditional self-calibration measurement model

摄影测量学 校准 摄像机切除 计算机视觉 参数化复杂度 计算机科学 失真(音乐) 准确度和精密度 人工智能 航程(航空) 摄像机自动校准 点(几何) 束流调整 匹配(统计) 数码相机 测量不确定度 数学 算法 工程类 统计 航空航天工程 放大器 计算机网络 几何学 带宽(计算)
作者
Changyu Long,Bile Wan,Zaihua Yang,Haomiao Liu,Tao Li,Guowei Ruan,Yugang Liu,Yuee Wei
标识
DOI:10.1117/12.2281984
摘要

Because of the close range photogrammetry has wide measuring range, high precision and high efficiency, the precision measurement of large size tasks take more and more important role Among them, the self-calibration measurement model based on adjustment optimization is the important reason to ensure the method to achieve high-precision measurement. However, with commercial grade SLR camera more and more applied to three-dimensional measurement, the measurement accuracy and the professional camera compared to a certain gap A large number of analyses have found that, in addition to the camera itself, the self -calibration model relies too much on the internal parameters of the camera, especially the distortion parameter, which is the important reason leading to the decrease of the measurement accuracy. In order to reduce the influence of the parameterized model on the measurement results, we propose a photogrammetric method that does not rely on the intrinsic parameters of the camera. Firstly, a non-parameterized calibration method for large field of view camera is designed by combining the perpendicular method and Zeiss calibration method. Then, the non-parameterized measurement model based on the angle information can be established after the matching of the same point and the initial value of the difference between different images. Finally, combined with adjustment optimization algorithm, the three-dimensional coordinate of the measured point in space is calculated accurately. Compared with the traditional photogrammetry results, it is proved that this method can effectively improve the photogrammetric accuracy of the large field SLR camera.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助虚幻采枫采纳,获得10
刚刚
刚刚
酷波er应助guozizi采纳,获得10
刚刚
萧萧落木天完成签到,获得积分10
刚刚
乔凌云完成签到 ,获得积分10
1秒前
科目三应助小碎步采纳,获得10
2秒前
852应助老实友蕊采纳,获得10
2秒前
2秒前
Drake101发布了新的文献求助10
2秒前
2秒前
3秒前
NexusExplorer应助碧蓝贞采纳,获得10
3秒前
科研通AI2S应助分歧者咋咋采纳,获得10
3秒前
无欲无求完成签到 ,获得积分20
3秒前
3秒前
获奖感言完成签到,获得积分10
4秒前
4秒前
慕青应助狐尔莫采纳,获得10
4秒前
4秒前
桶桶完成签到,获得积分20
4秒前
英俊的铭应助快乐小子采纳,获得10
4秒前
Stella应助Dali采纳,获得10
5秒前
忧心的洙完成签到,获得积分10
5秒前
吴宵完成签到,获得积分10
5秒前
hh发布了新的文献求助10
5秒前
若花若草完成签到,获得积分10
5秒前
赘婿应助Nafis采纳,获得10
5秒前
6秒前
泡泡发布了新的文献求助10
6秒前
柏不斜完成签到,获得积分10
7秒前
慧慧完成签到,获得积分10
7秒前
Dali应助ceeray23采纳,获得20
7秒前
qq完成签到,获得积分10
7秒前
所所应助小汪快跑采纳,获得10
7秒前
股价发布了新的文献求助10
7秒前
天天快乐应助er采纳,获得10
8秒前
灰太狼养的小灰灰完成签到,获得积分10
8秒前
大方忆秋完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
一颗小泡菜完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997