Role of Tungsten Doping on the Surface States in BiVO4 Photoanodes for Water Oxidation: Tuning the Electron Trapping Process

光电流 兴奋剂 材料科学 X射线光电子能谱 介电谱 表面状态 分解水 电子转移 氧化还原 光电化学 电导率 化学工程 电化学 分析化学(期刊) 催化作用 电极 光催化 化学 无机化学 光化学 光电子学 物理化学 曲面(拓扑) 几何学 工程类 冶金 数学 生物化学 色谱法
作者
Qin Shi,Sebastián Murcia‐López,Pengyi Tang,Cristina Flox,J.R. Morante,Zhaoyong Bian,Hui Wang,Teresa Andreu
出处
期刊:ACS Catalysis 卷期号:8 (4): 3331-3342 被引量:148
标识
DOI:10.1021/acscatal.7b04277
摘要

The nanostructured BiVO4 photoanodes were prepared by electrospinning and were further characterized by XRD, SEM, and XPS, confirming the bulk and surface modification of the electrodes attained by W addition. The role of surface states (SS) during water oxidation for the as-prepared photoanodes was investigated by using electrochemical, photoelectrochemical, and impedance spectroscopy measurements. An optimum 2% doping is observed in voltammetric measurements with the highest photocurrent density at 1.23 VRHE under back side illumination. It has been found that a high PEC performance requires an optimum ratio of density of surface states (NSS) with respect to the charge donor density (Nd), to give both good conductivity and enough surface reactive sites. The optimum doping (2%) shows the highest Nd and SS concentration, which leads to the high film conductivity and reactive sites. The reason for SS acting as reaction sites (i-SS) is suggested to be the reversible redox process of V5+/V4+ in semiconductor bulk to form water oxidation intermediates through the electron trapping process. Otherwise, the irreversible surface reductive reaction of VO2+ to VO2+ though the electron trapping process raises the surface recombination. W doping does have an effect on the surface properties of the BiVO4 electrode. It can tune the electron trapping process to obtain a high concentration of i-SS and less surface recombination. This work gives a further understanding for the enhancement of PEC performance caused by W doping in the field of charge transfer at the semiconductor/electrolyte interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矜悠完成签到,获得积分10
1秒前
huangbing123完成签到 ,获得积分10
1秒前
1秒前
yangyang2021完成签到,获得积分10
2秒前
Islet发布了新的文献求助10
2秒前
2秒前
执着代曼完成签到,获得积分10
3秒前
doooo完成签到,获得积分10
3秒前
一名路过的靓仔完成签到,获得积分10
3秒前
净禅完成签到 ,获得积分10
4秒前
强强发布了新的文献求助10
4秒前
故意的向日葵完成签到,获得积分20
4秒前
金也发布了新的文献求助10
4秒前
5秒前
wy.he应助魏迎蕾采纳,获得20
5秒前
jjy完成签到,获得积分10
5秒前
5秒前
文献菜鸟发布了新的文献求助10
5秒前
xixi完成签到,获得积分10
5秒前
6秒前
九月初五发布了新的文献求助30
6秒前
cxt1346发布了新的文献求助10
6秒前
丁sir完成签到,获得积分10
7秒前
科目三应助失眠梦柏采纳,获得30
7秒前
巴蒂完成签到,获得积分10
8秒前
SciGPT应助hanyang965采纳,获得10
8秒前
8秒前
飞龙爵士发布了新的文献求助10
9秒前
9秒前
大个应助kkdkg采纳,获得10
10秒前
sandy完成签到,获得积分10
10秒前
10秒前
10秒前
可靠幼旋应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
曦臐应助科研通管家采纳,获得10
11秒前
完美世界应助泽丶采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309103
求助须知:如何正确求助?哪些是违规求助? 2942468
关于积分的说明 8508989
捐赠科研通 2617498
什么是DOI,文献DOI怎么找? 1430174
科研通“疑难数据库(出版商)”最低求助积分说明 664072
邀请新用户注册赠送积分活动 649239