Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion

光子学 光子 激子 电场 纳米线 光电子学 半导体 扩散 材料科学 物理 光学 凝聚态物理 量子力学
作者
Qiu Hong Cui,Qian Peng,Yi Luo,Yuqian Jiang,Yongli Yan,Cong Wei,Zhigang Shuai,Cheng Sun,Jiannian Yao,Yong Sheng Zhao
出处
期刊:Science Advances [American Association for the Advancement of Science (AAAS)]
卷期号:4 (3) 被引量:57
标识
DOI:10.1126/sciadv.aap9861
摘要

The ability to steer the flow of light toward desired propagation directions is critically important for the realization of key functionalities in optical communication and information processing. Although various schemes have been proposed for this purpose, the lack of capability to incorporate an external electric field to effectively tune the light propagation has severely limited the on-chip integration of photonics and electronics. Because of the noninteractive nature of photons, it is only possible to electrically control the flow of light by modifying the refractive index of materials through the electro-optic effect. However, the weak optical effects need to be strongly amplified for practical applications in high-density photonic integrations. We show a new strategy that takes advantage of the strong exciton-photon coupling in active waveguides to effectively manipulate photon transport by controlling the interaction between excitons and the external electric field. Single-crystal organic semiconductor nanowires were used to generate highly stable Frenkel exciton polaritons with strong binding and diffusion abilities. By making use of directional exciton diffusion in an external electric field, we have realized an electrically driven asymmetric photon transport and thus directional light propagation in a single nanowire. With this new concept, we constructed a dual-output single wire-based device to build an electrically controlled single-pole double-throw optical switch with fast temporal response and high switching frequency. Our findings may lead to the innovation of concepts and device architectures for optical information processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
怡然冷安完成签到,获得积分10
1秒前
1秒前
哈哈哈完成签到,获得积分10
1秒前
秋去去完成签到,获得积分10
2秒前
希望天下0贩的0应助Towne采纳,获得10
2秒前
3秒前
3秒前
李健应助CJN采纳,获得10
3秒前
lily完成签到,获得积分20
4秒前
流云发布了新的文献求助10
4秒前
April完成签到 ,获得积分10
4秒前
清秀橘子完成签到,获得积分10
4秒前
mika完成签到,获得积分10
4秒前
wuliumu完成签到,获得积分10
4秒前
5秒前
5秒前
lizhoukan1完成签到,获得积分10
5秒前
李爱国应助whisper采纳,获得10
5秒前
6秒前
李爱国应助Rgly采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
张靖松完成签到 ,获得积分10
9秒前
Owen应助雨碎寒江采纳,获得10
9秒前
9秒前
9秒前
皮老八发布了新的文献求助10
9秒前
Planck发布了新的文献求助10
10秒前
苹果绿发布了新的文献求助10
10秒前
10秒前
10秒前
惊鸿客完成签到,获得积分10
10秒前
LHL发布了新的文献求助10
11秒前
zxy发布了新的文献求助10
11秒前
七海老祖完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386