Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion

光子学 光子 激子 电场 纳米线 光电子学 半导体 扩散 材料科学 物理 光学 凝聚态物理 量子力学
作者
Qiu Hong Cui,Qian Peng,Yi Luo,Yuqian Jiang,Yongli Yan,Cong Wei,Zhigang Shuai,Cheng Sun,Jiannian Yao,Yong Sheng Zhao
出处
期刊:Science Advances [American Association for the Advancement of Science (AAAS)]
卷期号:4 (3) 被引量:57
标识
DOI:10.1126/sciadv.aap9861
摘要

The ability to steer the flow of light toward desired propagation directions is critically important for the realization of key functionalities in optical communication and information processing. Although various schemes have been proposed for this purpose, the lack of capability to incorporate an external electric field to effectively tune the light propagation has severely limited the on-chip integration of photonics and electronics. Because of the noninteractive nature of photons, it is only possible to electrically control the flow of light by modifying the refractive index of materials through the electro-optic effect. However, the weak optical effects need to be strongly amplified for practical applications in high-density photonic integrations. We show a new strategy that takes advantage of the strong exciton-photon coupling in active waveguides to effectively manipulate photon transport by controlling the interaction between excitons and the external electric field. Single-crystal organic semiconductor nanowires were used to generate highly stable Frenkel exciton polaritons with strong binding and diffusion abilities. By making use of directional exciton diffusion in an external electric field, we have realized an electrically driven asymmetric photon transport and thus directional light propagation in a single nanowire. With this new concept, we constructed a dual-output single wire-based device to build an electrically controlled single-pole double-throw optical switch with fast temporal response and high switching frequency. Our findings may lead to the innovation of concepts and device architectures for optical information processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助木白采纳,获得10
刚刚
Can完成签到,获得积分10
刚刚
刚刚
gyhk完成签到,获得积分10
1秒前
1111发布了新的文献求助10
1秒前
leo发布了新的文献求助10
1秒前
橘生淮南完成签到,获得积分10
1秒前
1秒前
独特忆之完成签到,获得积分10
1秒前
1秒前
ljz910005发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
CC发布了新的文献求助10
2秒前
2秒前
3秒前
Barry发布了新的文献求助10
3秒前
zdesfsfa发布了新的文献求助10
3秒前
SIiveryyyy完成签到,获得积分10
3秒前
Albert发布了新的文献求助10
4秒前
天天快乐应助MHY采纳,获得10
4秒前
4秒前
cst发布了新的文献求助10
5秒前
冬虫夏草发布了新的文献求助10
5秒前
5秒前
茶博士完成签到,获得积分10
5秒前
开朗的又亦完成签到,获得积分10
6秒前
orixero应助风起人散采纳,获得10
6秒前
如不二完成签到,获得积分20
6秒前
自觉冰之完成签到,获得积分10
6秒前
6秒前
wanci应助暖冬22采纳,获得10
7秒前
天下无贼完成签到,获得积分10
7秒前
年轻丸子完成签到,获得积分10
7秒前
wjx完成签到 ,获得积分10
7秒前
wise111发布了新的文献求助10
7秒前
8秒前
cc6521发布了新的文献求助10
8秒前
马帅雅发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270592
求助须知:如何正确求助?哪些是违规求助? 4428746
关于积分的说明 13785589
捐赠科研通 4306594
什么是DOI,文献DOI怎么找? 2363149
邀请新用户注册赠送积分活动 1358858
关于科研通互助平台的介绍 1321740