Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion

光子学 光子 激子 电场 纳米线 光电子学 半导体 扩散 材料科学 物理 光学 凝聚态物理 量子力学
作者
Qiu Hong Cui,Qian Peng,Yi Luo,Yuqian Jiang,Yongli Yan,Cong Wei,Zhigang Shuai,Cheng Sun,Jiannian Yao,Yong Sheng Zhao
出处
期刊:Science Advances [American Association for the Advancement of Science (AAAS)]
卷期号:4 (3) 被引量:57
标识
DOI:10.1126/sciadv.aap9861
摘要

The ability to steer the flow of light toward desired propagation directions is critically important for the realization of key functionalities in optical communication and information processing. Although various schemes have been proposed for this purpose, the lack of capability to incorporate an external electric field to effectively tune the light propagation has severely limited the on-chip integration of photonics and electronics. Because of the noninteractive nature of photons, it is only possible to electrically control the flow of light by modifying the refractive index of materials through the electro-optic effect. However, the weak optical effects need to be strongly amplified for practical applications in high-density photonic integrations. We show a new strategy that takes advantage of the strong exciton-photon coupling in active waveguides to effectively manipulate photon transport by controlling the interaction between excitons and the external electric field. Single-crystal organic semiconductor nanowires were used to generate highly stable Frenkel exciton polaritons with strong binding and diffusion abilities. By making use of directional exciton diffusion in an external electric field, we have realized an electrically driven asymmetric photon transport and thus directional light propagation in a single nanowire. With this new concept, we constructed a dual-output single wire-based device to build an electrically controlled single-pole double-throw optical switch with fast temporal response and high switching frequency. Our findings may lead to the innovation of concepts and device architectures for optical information processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
e任思发布了新的文献求助10
1秒前
2秒前
英姑应助qi采纳,获得10
2秒前
Lny应助niko采纳,获得10
2秒前
3秒前
mmol发布了新的文献求助10
3秒前
yusheng发布了新的文献求助10
3秒前
熊啾啾发布了新的文献求助10
3秒前
坦率的匪发布了新的文献求助30
3秒前
Orange应助Amira采纳,获得10
4秒前
sanmumu完成签到,获得积分10
4秒前
纯真心情发布了新的文献求助10
4秒前
十一发布了新的文献求助10
4秒前
5秒前
研友_VZG7GZ应助泽丶采纳,获得10
5秒前
mwx应助SMU_mr_student采纳,获得10
5秒前
Mic应助明理的凌兰采纳,获得10
6秒前
今后应助李联洪采纳,获得10
6秒前
6秒前
billows发布了新的文献求助10
6秒前
7秒前
思源应助晓明拥抱世界采纳,获得10
7秒前
潇涯应助听闻墨笙采纳,获得20
7秒前
7秒前
科目三应助动听白秋采纳,获得10
8秒前
8秒前
天天快乐应助Xiangyang采纳,获得10
8秒前
念心发布了新的文献求助20
8秒前
星辰大海应助孤独的问凝采纳,获得10
9秒前
9秒前
玩命的囧发布了新的文献求助10
9秒前
阿凡达发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
水下月发布了新的文献求助10
10秒前
11秒前
Surry完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531486
求助须知:如何正确求助?哪些是违规求助? 4620295
关于积分的说明 14572638
捐赠科研通 4559928
什么是DOI,文献DOI怎么找? 2498650
邀请新用户注册赠送积分活动 1478588
关于科研通互助平台的介绍 1449980