Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion

光子学 光子 激子 电场 纳米线 光电子学 半导体 扩散 材料科学 物理 光学 凝聚态物理 量子力学
作者
Qiu Hong Cui,Qian Peng,Yi Luo,Yuqian Jiang,Yongli Yan,Cong Wei,Zhigang Shuai,Cheng Sun,Jiannian Yao,Yong Sheng Zhao
出处
期刊:Science Advances [American Association for the Advancement of Science (AAAS)]
卷期号:4 (3) 被引量:57
标识
DOI:10.1126/sciadv.aap9861
摘要

The ability to steer the flow of light toward desired propagation directions is critically important for the realization of key functionalities in optical communication and information processing. Although various schemes have been proposed for this purpose, the lack of capability to incorporate an external electric field to effectively tune the light propagation has severely limited the on-chip integration of photonics and electronics. Because of the noninteractive nature of photons, it is only possible to electrically control the flow of light by modifying the refractive index of materials through the electro-optic effect. However, the weak optical effects need to be strongly amplified for practical applications in high-density photonic integrations. We show a new strategy that takes advantage of the strong exciton-photon coupling in active waveguides to effectively manipulate photon transport by controlling the interaction between excitons and the external electric field. Single-crystal organic semiconductor nanowires were used to generate highly stable Frenkel exciton polaritons with strong binding and diffusion abilities. By making use of directional exciton diffusion in an external electric field, we have realized an electrically driven asymmetric photon transport and thus directional light propagation in a single nanowire. With this new concept, we constructed a dual-output single wire-based device to build an electrically controlled single-pole double-throw optical switch with fast temporal response and high switching frequency. Our findings may lead to the innovation of concepts and device architectures for optical information processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小luc完成签到,获得积分10
1秒前
尤水绿完成签到,获得积分10
1秒前
vv1223发布了新的文献求助20
2秒前
coke完成签到,获得积分10
2秒前
xuxuxuuxuxux完成签到,获得积分10
3秒前
用户5063899完成签到,获得积分10
3秒前
布丁圆团发布了新的文献求助10
3秒前
hui完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助20
3秒前
Owen应助小畅采纳,获得10
3秒前
跳跃的滑板完成签到,获得积分10
3秒前
4秒前
bellapp完成签到 ,获得积分10
4秒前
哈哈完成签到,获得积分10
4秒前
Jasper应助tiezhu采纳,获得10
5秒前
拾光完成签到,获得积分10
5秒前
和路雪完成签到,获得积分10
6秒前
等待听安完成签到 ,获得积分10
6秒前
YWang完成签到,获得积分10
8秒前
諵十一完成签到,获得积分10
8秒前
8秒前
冷酷太清完成签到,获得积分10
8秒前
啦啦啦完成签到 ,获得积分10
8秒前
打打应助马明旋采纳,获得10
8秒前
9秒前
9秒前
9秒前
火狐狸kc完成签到,获得积分10
10秒前
月月发布了新的文献求助10
10秒前
10秒前
王SQ完成签到,获得积分10
10秒前
NexusExplorer应助Lmj采纳,获得10
11秒前
11秒前
元谷雪应助张正采纳,获得10
11秒前
大力诺言完成签到,获得积分10
11秒前
诚心晓露完成签到,获得积分10
12秒前
12秒前
Even关注了科研通微信公众号
12秒前
jintian完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977