Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion

光子学 光子 激子 电场 纳米线 光电子学 半导体 扩散 材料科学 物理 光学 凝聚态物理 量子力学
作者
Qiu Hong Cui,Qian Peng,Yi Luo,Yuqian Jiang,Yongli Yan,Cong Wei,Zhigang Shuai,Cheng Sun,Jiannian Yao,Yong Sheng Zhao
出处
期刊:Science Advances [American Association for the Advancement of Science (AAAS)]
卷期号:4 (3) 被引量:57
标识
DOI:10.1126/sciadv.aap9861
摘要

The ability to steer the flow of light toward desired propagation directions is critically important for the realization of key functionalities in optical communication and information processing. Although various schemes have been proposed for this purpose, the lack of capability to incorporate an external electric field to effectively tune the light propagation has severely limited the on-chip integration of photonics and electronics. Because of the noninteractive nature of photons, it is only possible to electrically control the flow of light by modifying the refractive index of materials through the electro-optic effect. However, the weak optical effects need to be strongly amplified for practical applications in high-density photonic integrations. We show a new strategy that takes advantage of the strong exciton-photon coupling in active waveguides to effectively manipulate photon transport by controlling the interaction between excitons and the external electric field. Single-crystal organic semiconductor nanowires were used to generate highly stable Frenkel exciton polaritons with strong binding and diffusion abilities. By making use of directional exciton diffusion in an external electric field, we have realized an electrically driven asymmetric photon transport and thus directional light propagation in a single nanowire. With this new concept, we constructed a dual-output single wire-based device to build an electrically controlled single-pole double-throw optical switch with fast temporal response and high switching frequency. Our findings may lead to the innovation of concepts and device architectures for optical information processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天气预报完成签到,获得积分10
1秒前
smottom应助热情的戾采纳,获得10
1秒前
ruru完成签到,获得积分10
1秒前
布布完成签到,获得积分10
1秒前
SciGPT应助Han采纳,获得10
1秒前
bkagyin应助二十二采纳,获得10
1秒前
Yu完成签到,获得积分10
1秒前
Elizabeth12138完成签到,获得积分10
2秒前
3秒前
vvA11发布了新的文献求助10
3秒前
脑洞疼应助suye采纳,获得10
3秒前
4秒前
4秒前
航航完成签到,获得积分20
5秒前
小蘑菇应助健忘捕采纳,获得10
5秒前
6秒前
6秒前
要减肥完成签到,获得积分10
6秒前
6秒前
和谐青柏应助popo采纳,获得10
6秒前
7秒前
牛奶糖完成签到,获得积分10
7秒前
悠悠发布了新的文献求助10
7秒前
Jasper应助Yu采纳,获得100
7秒前
7秒前
乐乐应助善良的血茗采纳,获得10
7秒前
niobelynn发布了新的文献求助10
8秒前
8秒前
极夜完成签到,获得积分10
8秒前
8秒前
8秒前
bullyr关注了科研通微信公众号
9秒前
脑洞疼应助昵称采纳,获得10
9秒前
9秒前
土白完成签到,获得积分10
9秒前
10秒前
巧克李发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624445
求助须知:如何正确求助?哪些是违规求助? 4710318
关于积分的说明 14950073
捐赠科研通 4778363
什么是DOI,文献DOI怎么找? 2553244
邀请新用户注册赠送积分活动 1515179
关于科研通互助平台的介绍 1475520