Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion

光子学 光子 激子 电场 纳米线 光电子学 半导体 扩散 材料科学 物理 光学 凝聚态物理 量子力学
作者
Qiu Hong Cui,Qian Peng,Yi Luo,Yuqian Jiang,Yongli Yan,Cong Wei,Zhigang Shuai,Cheng Sun,Jiannian Yao,Yong Sheng Zhao
出处
期刊:Science Advances [American Association for the Advancement of Science (AAAS)]
卷期号:4 (3) 被引量:57
标识
DOI:10.1126/sciadv.aap9861
摘要

The ability to steer the flow of light toward desired propagation directions is critically important for the realization of key functionalities in optical communication and information processing. Although various schemes have been proposed for this purpose, the lack of capability to incorporate an external electric field to effectively tune the light propagation has severely limited the on-chip integration of photonics and electronics. Because of the noninteractive nature of photons, it is only possible to electrically control the flow of light by modifying the refractive index of materials through the electro-optic effect. However, the weak optical effects need to be strongly amplified for practical applications in high-density photonic integrations. We show a new strategy that takes advantage of the strong exciton-photon coupling in active waveguides to effectively manipulate photon transport by controlling the interaction between excitons and the external electric field. Single-crystal organic semiconductor nanowires were used to generate highly stable Frenkel exciton polaritons with strong binding and diffusion abilities. By making use of directional exciton diffusion in an external electric field, we have realized an electrically driven asymmetric photon transport and thus directional light propagation in a single nanowire. With this new concept, we constructed a dual-output single wire-based device to build an electrically controlled single-pole double-throw optical switch with fast temporal response and high switching frequency. Our findings may lead to the innovation of concepts and device architectures for optical information processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
weihongjuan发布了新的文献求助10
刚刚
帅气的馒头应助酷炫初雪采纳,获得10
刚刚
janette完成签到,获得积分10
1秒前
爆米花应助乌衣白马采纳,获得10
1秒前
1秒前
财神爷心尖尖的宝儿完成签到,获得积分10
2秒前
zyc发布了新的文献求助10
2秒前
nn完成签到,获得积分20
2秒前
阿屁屁猪完成签到,获得积分10
4秒前
4秒前
TearMarks完成签到 ,获得积分10
4秒前
小白发布了新的文献求助200
4秒前
4秒前
酷波er应助baobaot采纳,获得10
5秒前
勿忘9451发布了新的文献求助10
5秒前
研友_Z6G2D8完成签到,获得积分10
5秒前
可爱的函函应助pjjpk01采纳,获得10
6秒前
贝尔摩德发布了新的文献求助10
7秒前
CR完成签到,获得积分10
8秒前
Liuya发布了新的文献求助10
8秒前
8秒前
科目三应助辛勤面包采纳,获得10
8秒前
Mrlazy发布了新的文献求助10
8秒前
小蘑菇应助马明旋采纳,获得10
8秒前
8秒前
9秒前
9秒前
紫丁香完成签到 ,获得积分10
10秒前
11秒前
11秒前
陈BB发布了新的文献求助20
11秒前
ww完成签到,获得积分10
11秒前
田小班完成签到,获得积分10
11秒前
传奇3应助把握有度采纳,获得10
11秒前
11秒前
12秒前
Ooops完成签到,获得积分10
12秒前
mochen完成签到,获得积分10
12秒前
神经递质发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836