Confocal non-line-of-sight imaging based on the light-cone transform

非视线传播 计算机视觉 人工智能 计算机科学 光学 探测器 物理 共焦 跟踪(教育) 激光雷达 测距 电信 心理学 教育学 无线
作者
Matthew O’Toole,David B. Lindell,Gordon Wetzstein
出处
期刊:Nature [Nature Portfolio]
卷期号:555 (7696): 338-341 被引量:373
标识
DOI:10.1038/nature25489
摘要

How to image objects that are hidden from a camera's view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助dada采纳,获得10
1秒前
微风完成签到,获得积分10
2秒前
2秒前
hyominhsu发布了新的文献求助10
2秒前
2秒前
今后应助luoluo采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
炸药发布了新的文献求助10
8秒前
张仕俊完成签到,获得积分10
8秒前
林清眠发布了新的文献求助80
9秒前
9秒前
10秒前
Yolanda关注了科研通微信公众号
11秒前
傅晨玲发布了新的文献求助10
12秒前
糟糕的铁锤发布了新的文献求助100
12秒前
dd发布了新的文献求助10
12秒前
坦坦星发布了新的文献求助10
13秒前
13秒前
aaaaa发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
angel发布了新的文献求助10
17秒前
隐形耷发布了新的文献求助10
18秒前
NYM发布了新的文献求助10
18秒前
18秒前
生动的半山完成签到,获得积分10
21秒前
yy发布了新的文献求助50
21秒前
22秒前
lulu发布了新的文献求助10
23秒前
隐形耷完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
28秒前
Jasper应助科研通管家采纳,获得10
31秒前
31秒前
充电宝应助科研通管家采纳,获得10
31秒前
SYLH应助科研通管家采纳,获得10
31秒前
大个应助科研通管家采纳,获得10
31秒前
科研通AI2S应助EuitNeck采纳,获得10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664568
求助须知:如何正确求助?哪些是违规求助? 3224522
关于积分的说明 9758004
捐赠科研通 2934442
什么是DOI,文献DOI怎么找? 1606858
邀请新用户注册赠送积分活动 758890
科研通“疑难数据库(出版商)”最低求助积分说明 735035