六氟丙烯
金属锂
电解质
材料科学
锂(药物)
锂电池
酰亚胺
金属
离子液体
聚合物
无机化学
高分子化学
碳酸丙烯酯
电导率
氟化物
聚合物电解质
热稳定性
离子电导率
化学
有机化学
共聚物
离子键合
复合材料
电极
离子
催化作用
冶金
四氟乙烯
医学
内分泌学
物理化学
作者
Xiaona Pan,Tianyi Liu,David J. Kautz,Linqin Mu,Chixia Tian,Timothy Edward Long,Peixia Yang,Feng Lin
标识
DOI:10.1016/j.jpowsour.2018.09.080
摘要
Ionically conductive polymer electrolytes represent a class of safe and environment-friendly electrolytes for next-generation alkali metal batteries. Understanding the interplay between composition-driven interfacial processes and battery performance can fundamentally inform the design of polymer electrolytes for practical applications. In this study, we fabricate lithium metal batteries based on transparent free-standing ionic liquid gel polymer electrolytes (ILGPEs) and LiFePO4 cathodes. We develop the ILGPEs using a composite of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). A thorough compositional optimization shows that the lithium ion conductivity of the ILGPE increases with the increase of PP13TFSI and LiTFSI, reaching maxima of 1.3 mS cm−1 at 23 °C and 5.82 mS cm−1 at 80 °C when the ILGPE contains 60 wt% PP13TFSI and 20 wt% LiTFSI. The optimized ILGPE exhibits excellent interfacial stability against the lithium metal, as signified by the stable interfacial resistance upon long-term storage. The LiFePO4|ILGPE|Li cells can deliver superior battery performance with a practical capacity approaching 89.5% of the theoretical capacity and capacity retention of 95.0% after 200 cycles. The formation of the electrode–electrolyte interphases takes place primarily during the initial cycles, which likely accounts for the activation period observed in LiFePO4|ILGPE|Li cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI