Quantitative Structure-Activity Relationship Study of Camptothecin Derivatives as Anticancer Drugs Using Molecular Descriptors

数量结构-活动关系 分子描述符 适用范围 线性回归 试验装置 化学 喜树碱 生物系统 计算机科学 人工智能 机器学习 立体化学 有机化学 生物
作者
Neda Ahmadinejad,Fatemeh Shafiei
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
被引量:1
标识
DOI:10.2174/1386207322666190708112251
摘要

Aim and Objective: A Quantitative Structure-Activity Relationship (QSAR) has been widely developed to derive a correlation between chemical structures of molecules to their known activities. In the present investigation, QSAR models have been carried out on 76 Camptothecin (CPT) derivatives as anticancer drugs to develop a robust model for the prediction of physicochemical properties. Materials and Methods: A training set of 60 structurally diverse CPT derivatives was used to construct QSAR models for the prediction of physiochemical parameters such as Van der Waals surface area (SvdW), Van der Waals Volume (VvdW), Molar Refractivity (MR) and Polarizability (α). The QSAR models were optimized using Multiple Linear Regression (MLR) analysis. A test set of 16 compounds was evaluated using the defined models. : The Genetic Algorithm And Multiple Linear Regression Analysis (GA-MLR) were used to select the descriptors derived from the Dragon software to generate the correlation models that relate the structural features to the studied properties. Results: QSAR models were used to delineate the important descriptors responsible for the properties of the CPT derivatives. The statistically significant QSAR models derived by GA-MLR analysis were validated by Leave-One-Out Cross-Validation (LOOCV) and test set validation methods. The multicollinearity and autocorrelation properties of the descriptors contributed in the models were tested by calculating the Variance Inflation Factor (VIF) and the Durbin–Watson (DW) statistics. Conclusion: The predictive ability of the models was found to be satisfactory. Thus, QSAR models derived from this study may be helpful for modeling and designing some new CPT derivatives and for predicting their activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
普鲁卡因完成签到,获得积分10
2秒前
倪塔宝贝完成签到 ,获得积分10
2秒前
小花生完成签到 ,获得积分10
2秒前
知了完成签到 ,获得积分10
6秒前
为你钟情完成签到 ,获得积分10
7秒前
10秒前
11秒前
韭菜盒子发布了新的文献求助10
13秒前
潘特发布了新的文献求助10
16秒前
乌滴子完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
善学以致用应助韭菜盒子采纳,获得10
18秒前
jiaaniu完成签到 ,获得积分10
20秒前
清脆靳完成签到,获得积分10
21秒前
cp3xzh完成签到,获得积分10
21秒前
tian发布了新的文献求助10
23秒前
tian发布了新的文献求助10
23秒前
明理宛秋完成签到 ,获得积分10
24秒前
S月小小完成签到,获得积分10
28秒前
斯文的慕儿完成签到 ,获得积分10
35秒前
keen完成签到 ,获得积分10
35秒前
韭菜盒子完成签到,获得积分20
36秒前
潘特完成签到,获得积分10
37秒前
小彭友完成签到,获得积分10
48秒前
49秒前
josie完成签到 ,获得积分10
53秒前
llll完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
53秒前
韭菜发布了新的文献求助10
53秒前
外向的斑马完成签到 ,获得积分10
54秒前
村长热爱美丽完成签到 ,获得积分10
56秒前
尹尹关注了科研通微信公众号
58秒前
呆呆完成签到 ,获得积分10
59秒前
xianyaoz完成签到 ,获得积分0
1分钟前
杨远杰完成签到,获得积分10
1分钟前
蓝桉完成签到 ,获得积分10
1分钟前
JuliaWang完成签到 ,获得积分10
1分钟前
无限的含羞草完成签到,获得积分10
1分钟前
八二力完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022