Quantitative Structure-Activity Relationship Study of Camptothecin Derivatives as Anticancer Drugs Using Molecular Descriptors

数量结构-活动关系 分子描述符 适用范围 线性回归 试验装置 化学 喜树碱 生物系统 计算机科学 人工智能 机器学习 立体化学 有机化学 生物
作者
Neda Ahmadinejad,Fatemeh Shafiei
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
被引量:1
标识
DOI:10.2174/1386207322666190708112251
摘要

Aim and Objective: A Quantitative Structure-Activity Relationship (QSAR) has been widely developed to derive a correlation between chemical structures of molecules to their known activities. In the present investigation, QSAR models have been carried out on 76 Camptothecin (CPT) derivatives as anticancer drugs to develop a robust model for the prediction of physicochemical properties. Materials and Methods: A training set of 60 structurally diverse CPT derivatives was used to construct QSAR models for the prediction of physiochemical parameters such as Van der Waals surface area (SvdW), Van der Waals Volume (VvdW), Molar Refractivity (MR) and Polarizability (α). The QSAR models were optimized using Multiple Linear Regression (MLR) analysis. A test set of 16 compounds was evaluated using the defined models. : The Genetic Algorithm And Multiple Linear Regression Analysis (GA-MLR) were used to select the descriptors derived from the Dragon software to generate the correlation models that relate the structural features to the studied properties. Results: QSAR models were used to delineate the important descriptors responsible for the properties of the CPT derivatives. The statistically significant QSAR models derived by GA-MLR analysis were validated by Leave-One-Out Cross-Validation (LOOCV) and test set validation methods. The multicollinearity and autocorrelation properties of the descriptors contributed in the models were tested by calculating the Variance Inflation Factor (VIF) and the Durbin–Watson (DW) statistics. Conclusion: The predictive ability of the models was found to be satisfactory. Thus, QSAR models derived from this study may be helpful for modeling and designing some new CPT derivatives and for predicting their activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
卡西法完成签到,获得积分10
1秒前
机灵的忆梅完成签到,获得积分10
1秒前
不想干活应助infe采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
不想干活应助zjq采纳,获得10
3秒前
典雅的俊驰应助Jing采纳,获得10
4秒前
咸鱼发布了新的文献求助20
4秒前
4秒前
4秒前
爆米花应助Jane采纳,获得10
4秒前
甘蔗发布了新的文献求助30
4秒前
4秒前
淡然谷秋完成签到 ,获得积分10
5秒前
上官若男应助柒月樊霜采纳,获得10
5秒前
木头人呐完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
诚心中恶发布了新的文献求助10
7秒前
背书强完成签到 ,获得积分10
7秒前
7秒前
Jack123完成签到,获得积分10
8秒前
SciGPT应助认真的缘郡采纳,获得10
8秒前
8秒前
大模型应助乖猫要努力采纳,获得10
8秒前
9秒前
9秒前
哒哒发布了新的文献求助10
9秒前
9秒前
9秒前
眼睛大又蓝完成签到,获得积分10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
shihuishui完成签到,获得积分10
10秒前
田様应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615619
求助须知:如何正确求助?哪些是违规求助? 4019269
关于积分的说明 12441658
捐赠科研通 3702297
什么是DOI,文献DOI怎么找? 2041522
邀请新用户注册赠送积分活动 1074192
科研通“疑难数据库(出版商)”最低求助积分说明 957826