Quantitative Structure-Activity Relationship Study of Camptothecin Derivatives as Anticancer Drugs Using Molecular Descriptors

数量结构-活动关系 分子描述符 适用范围 线性回归 试验装置 化学 喜树碱 生物系统 计算机科学 人工智能 机器学习 立体化学 有机化学 生物
作者
Neda Ahmadinejad,Fatemeh Shafiei
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
被引量:1
标识
DOI:10.2174/1386207322666190708112251
摘要

Aim and Objective: A Quantitative Structure-Activity Relationship (QSAR) has been widely developed to derive a correlation between chemical structures of molecules to their known activities. In the present investigation, QSAR models have been carried out on 76 Camptothecin (CPT) derivatives as anticancer drugs to develop a robust model for the prediction of physicochemical properties. Materials and Methods: A training set of 60 structurally diverse CPT derivatives was used to construct QSAR models for the prediction of physiochemical parameters such as Van der Waals surface area (SvdW), Van der Waals Volume (VvdW), Molar Refractivity (MR) and Polarizability (α). The QSAR models were optimized using Multiple Linear Regression (MLR) analysis. A test set of 16 compounds was evaluated using the defined models. : The Genetic Algorithm And Multiple Linear Regression Analysis (GA-MLR) were used to select the descriptors derived from the Dragon software to generate the correlation models that relate the structural features to the studied properties. Results: QSAR models were used to delineate the important descriptors responsible for the properties of the CPT derivatives. The statistically significant QSAR models derived by GA-MLR analysis were validated by Leave-One-Out Cross-Validation (LOOCV) and test set validation methods. The multicollinearity and autocorrelation properties of the descriptors contributed in the models were tested by calculating the Variance Inflation Factor (VIF) and the Durbin–Watson (DW) statistics. Conclusion: The predictive ability of the models was found to be satisfactory. Thus, QSAR models derived from this study may be helpful for modeling and designing some new CPT derivatives and for predicting their activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
乐乐应助jjj采纳,获得10
3秒前
眼睛大的傲菡完成签到,获得积分10
4秒前
齐路明发布了新的文献求助10
5秒前
7秒前
我是老大应助微毒麻醉采纳,获得10
9秒前
haoliu完成签到,获得积分10
9秒前
boytoa完成签到,获得积分10
9秒前
10秒前
10秒前
wangyaya应助yangluyao采纳,获得10
14秒前
kang发布了新的文献求助10
14秒前
15秒前
15秒前
ForZero完成签到 ,获得积分20
15秒前
leiiiiiiii发布了新的文献求助10
17秒前
ccm应助细心青烟采纳,获得10
17秒前
17秒前
17秒前
18秒前
彭于晏应助qiqi采纳,获得10
18秒前
胡萝卜icc完成签到,获得积分20
18秒前
18秒前
夏青荷发布了新的文献求助10
20秒前
21秒前
慕苡完成签到 ,获得积分10
21秒前
葭月十七发布了新的文献求助10
22秒前
23秒前
孟阳发布了新的文献求助50
24秒前
HelloXue完成签到,获得积分10
26秒前
搜集达人应助琳雨采纳,获得10
26秒前
27秒前
28秒前
uu完成签到,获得积分10
30秒前
chenry825i完成签到 ,获得积分10
31秒前
kang完成签到,获得积分20
32秒前
32秒前
moral完成签到 ,获得积分10
33秒前
收敛发布了新的文献求助10
33秒前
李爱国应助尊敬飞丹采纳,获得10
33秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329654
求助须知:如何正确求助?哪些是违规求助? 2959247
关于积分的说明 8594980
捐赠科研通 2637718
什么是DOI,文献DOI怎么找? 1443719
科研通“疑难数据库(出版商)”最低求助积分说明 668843
邀请新用户注册赠送积分活动 656278