Quantitative Structure-Activity Relationship Study of Camptothecin Derivatives as Anticancer Drugs Using Molecular Descriptors

数量结构-活动关系 分子描述符 适用范围 线性回归 试验装置 化学 喜树碱 生物系统 计算机科学 人工智能 机器学习 立体化学 有机化学 生物
作者
Neda Ahmadinejad,Fatemeh Shafiei
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
被引量:1
标识
DOI:10.2174/1386207322666190708112251
摘要

Aim and Objective: A Quantitative Structure-Activity Relationship (QSAR) has been widely developed to derive a correlation between chemical structures of molecules to their known activities. In the present investigation, QSAR models have been carried out on 76 Camptothecin (CPT) derivatives as anticancer drugs to develop a robust model for the prediction of physicochemical properties. Materials and Methods: A training set of 60 structurally diverse CPT derivatives was used to construct QSAR models for the prediction of physiochemical parameters such as Van der Waals surface area (SvdW), Van der Waals Volume (VvdW), Molar Refractivity (MR) and Polarizability (α). The QSAR models were optimized using Multiple Linear Regression (MLR) analysis. A test set of 16 compounds was evaluated using the defined models. : The Genetic Algorithm And Multiple Linear Regression Analysis (GA-MLR) were used to select the descriptors derived from the Dragon software to generate the correlation models that relate the structural features to the studied properties. Results: QSAR models were used to delineate the important descriptors responsible for the properties of the CPT derivatives. The statistically significant QSAR models derived by GA-MLR analysis were validated by Leave-One-Out Cross-Validation (LOOCV) and test set validation methods. The multicollinearity and autocorrelation properties of the descriptors contributed in the models were tested by calculating the Variance Inflation Factor (VIF) and the Durbin–Watson (DW) statistics. Conclusion: The predictive ability of the models was found to be satisfactory. Thus, QSAR models derived from this study may be helpful for modeling and designing some new CPT derivatives and for predicting their activity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
单薄怡发布了新的文献求助10
刚刚
要减肥的断秋应助wjz采纳,获得20
刚刚
1秒前
Lucas应助涂丁元采纳,获得10
2秒前
大意的飞莲完成签到,获得积分10
2秒前
赐我一篇SCI完成签到,获得积分10
3秒前
4秒前
4秒前
魂断红颜发布了新的文献求助10
4秒前
amamchine发布了新的文献求助10
5秒前
201314zlj君发布了新的文献求助10
5秒前
ffw1发布了新的文献求助10
5秒前
热心枕头发布了新的文献求助10
5秒前
6秒前
缥缈傥发布了新的文献求助10
6秒前
丘比特应助yu采纳,获得10
8秒前
星辰大海应助948984采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
wjz完成签到,获得积分10
9秒前
10秒前
wbshore发布了新的文献求助10
10秒前
10秒前
雄鹰般的女人应助hjr2002160采纳,获得10
11秒前
彭于晏应助星辰采纳,获得10
12秒前
13秒前
所所应助Wendy采纳,获得10
13秒前
13秒前
kiwiii发布了新的文献求助10
14秒前
隐形曼青应助风祺采纳,获得10
15秒前
雷雷完成签到,获得积分10
17秒前
17秒前
完美世界应助Nowind采纳,获得10
18秒前
18秒前
HuiYmao发布了新的文献求助10
19秒前
yy完成签到 ,获得积分10
19秒前
pipi发布了新的文献求助10
19秒前
科研通AI6应助四体不勤采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613692
求助须知:如何正确求助?哪些是违规求助? 4698791
关于积分的说明 14898976
捐赠科研通 4736882
什么是DOI,文献DOI怎么找? 2547121
邀请新用户注册赠送积分活动 1511036
关于科研通互助平台的介绍 1473602