Quantitative Structure-Activity Relationship Study of Camptothecin Derivatives as Anticancer Drugs Using Molecular Descriptors

数量结构-活动关系 分子描述符 适用范围 线性回归 试验装置 化学 喜树碱 生物系统 计算机科学 人工智能 机器学习 立体化学 有机化学 生物
作者
Neda Ahmadinejad,Fatemeh Shafiei
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
被引量:1
标识
DOI:10.2174/1386207322666190708112251
摘要

Aim and Objective: A Quantitative Structure-Activity Relationship (QSAR) has been widely developed to derive a correlation between chemical structures of molecules to their known activities. In the present investigation, QSAR models have been carried out on 76 Camptothecin (CPT) derivatives as anticancer drugs to develop a robust model for the prediction of physicochemical properties. Materials and Methods: A training set of 60 structurally diverse CPT derivatives was used to construct QSAR models for the prediction of physiochemical parameters such as Van der Waals surface area (SvdW), Van der Waals Volume (VvdW), Molar Refractivity (MR) and Polarizability (α). The QSAR models were optimized using Multiple Linear Regression (MLR) analysis. A test set of 16 compounds was evaluated using the defined models. : The Genetic Algorithm And Multiple Linear Regression Analysis (GA-MLR) were used to select the descriptors derived from the Dragon software to generate the correlation models that relate the structural features to the studied properties. Results: QSAR models were used to delineate the important descriptors responsible for the properties of the CPT derivatives. The statistically significant QSAR models derived by GA-MLR analysis were validated by Leave-One-Out Cross-Validation (LOOCV) and test set validation methods. The multicollinearity and autocorrelation properties of the descriptors contributed in the models were tested by calculating the Variance Inflation Factor (VIF) and the Durbin–Watson (DW) statistics. Conclusion: The predictive ability of the models was found to be satisfactory. Thus, QSAR models derived from this study may be helpful for modeling and designing some new CPT derivatives and for predicting their activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷的白梦完成签到,获得积分10
刚刚
斯文的若颜完成签到,获得积分10
1秒前
1秒前
Firefly完成签到,获得积分10
1秒前
zjh完成签到,获得积分20
1秒前
科研通AI5应助陆离采纳,获得10
2秒前
2秒前
芋泥螺蛳猫完成签到,获得积分10
2秒前
科研狗完成签到,获得积分10
3秒前
挡住所有坏运气888完成签到,获得积分10
3秒前
万能图书馆应助misalia采纳,获得10
3秒前
4秒前
分风吹完成签到 ,获得积分10
4秒前
杜嘟嘟发布了新的文献求助10
5秒前
QinMengyao发布了新的文献求助10
6秒前
李繁蕊发布了新的文献求助10
7秒前
眼睛大的鑫磊完成签到,获得积分10
7秒前
雪白红紫完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
Fareth发布了新的文献求助10
9秒前
Air云完成签到,获得积分10
9秒前
PakhoPHD完成签到 ,获得积分10
9秒前
玉麒麟完成签到,获得积分0
10秒前
Angela完成签到,获得积分10
10秒前
希望天下0贩的0应助小吴采纳,获得10
10秒前
10秒前
lilac应助苹果煎饼采纳,获得10
11秒前
大模型应助百宝采纳,获得10
11秒前
怕黑砖头完成签到,获得积分10
12秒前
13秒前
13秒前
花玥鹿完成签到,获得积分10
13秒前
cybbbbbb完成签到,获得积分10
13秒前
咳咳完成签到,获得积分10
13秒前
14秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
14秒前
14秒前
Fareth完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740