Quantitative Structure-Activity Relationship Study of Camptothecin Derivatives as Anticancer Drugs Using Molecular Descriptors

数量结构-活动关系 分子描述符 适用范围 线性回归 试验装置 化学 喜树碱 生物系统 计算机科学 人工智能 机器学习 立体化学 有机化学 生物
作者
Neda Ahmadinejad,Fatemeh Shafiei
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
被引量:1
标识
DOI:10.2174/1386207322666190708112251
摘要

Aim and Objective: A Quantitative Structure-Activity Relationship (QSAR) has been widely developed to derive a correlation between chemical structures of molecules to their known activities. In the present investigation, QSAR models have been carried out on 76 Camptothecin (CPT) derivatives as anticancer drugs to develop a robust model for the prediction of physicochemical properties. Materials and Methods: A training set of 60 structurally diverse CPT derivatives was used to construct QSAR models for the prediction of physiochemical parameters such as Van der Waals surface area (SvdW), Van der Waals Volume (VvdW), Molar Refractivity (MR) and Polarizability (α). The QSAR models were optimized using Multiple Linear Regression (MLR) analysis. A test set of 16 compounds was evaluated using the defined models. : The Genetic Algorithm And Multiple Linear Regression Analysis (GA-MLR) were used to select the descriptors derived from the Dragon software to generate the correlation models that relate the structural features to the studied properties. Results: QSAR models were used to delineate the important descriptors responsible for the properties of the CPT derivatives. The statistically significant QSAR models derived by GA-MLR analysis were validated by Leave-One-Out Cross-Validation (LOOCV) and test set validation methods. The multicollinearity and autocorrelation properties of the descriptors contributed in the models were tested by calculating the Variance Inflation Factor (VIF) and the Durbin–Watson (DW) statistics. Conclusion: The predictive ability of the models was found to be satisfactory. Thus, QSAR models derived from this study may be helpful for modeling and designing some new CPT derivatives and for predicting their activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伯爵完成签到 ,获得积分10
刚刚
wdccx完成签到,获得积分10
2秒前
carlin完成签到,获得积分10
3秒前
北城完成签到 ,获得积分10
9秒前
土豆晴完成签到 ,获得积分10
10秒前
卡戎529完成签到 ,获得积分10
11秒前
可耐的问柳完成签到 ,获得积分10
11秒前
liujinjin完成签到,获得积分10
17秒前
研友_西门孤晴完成签到,获得积分10
19秒前
planto完成签到,获得积分10
22秒前
wonwojo完成签到 ,获得积分10
22秒前
dslnfakjnij完成签到 ,获得积分10
22秒前
科研通AI2S应助btk采纳,获得30
24秒前
鲁卓林完成签到,获得积分10
26秒前
Lee完成签到,获得积分20
30秒前
无辜的行云完成签到 ,获得积分0
30秒前
ran完成签到 ,获得积分10
31秒前
行走De太阳花完成签到,获得积分10
32秒前
Hindiii完成签到,获得积分10
33秒前
火星上的雨柏完成签到,获得积分10
38秒前
Shabby0-0完成签到,获得积分10
42秒前
666完成签到 ,获得积分10
42秒前
liu完成签到,获得积分10
44秒前
lx完成签到,获得积分10
46秒前
她的城完成签到,获得积分0
47秒前
美满的稚晴完成签到 ,获得积分10
51秒前
氟锑酸完成签到 ,获得积分10
55秒前
柑橘完成签到 ,获得积分10
55秒前
隐形曼青应助科研通管家采纳,获得10
56秒前
Wilbert完成签到 ,获得积分10
58秒前
耸耸完成签到 ,获得积分10
59秒前
健忘数据线完成签到 ,获得积分10
59秒前
bzdjsmw完成签到 ,获得积分10
1分钟前
不想看文献完成签到 ,获得积分10
1分钟前
dmr完成签到,获得积分10
1分钟前
1分钟前
zzh完成签到 ,获得积分10
1分钟前
华理附院孙文博完成签到 ,获得积分10
1分钟前
dypdyp应助哈哈采纳,获得10
1分钟前
罗马没有马完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513391
关于积分的说明 11167428
捐赠科研通 3248822
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664