细菌
细菌细胞结构
荧光
抗菌活性
生物相容性
化学
大肠杆菌
细菌生长
生物物理学
材料科学
生物化学
生物
有机化学
基因
物理
量子力学
遗传学
作者
Jie Shi,Fan Wang,Zhe Sun,Yangyang Liu,Jiangna Guo,Hailei Mao,Feng Yan
标识
DOI:10.1016/j.actbio.2019.07.039
摘要
A series of aggregation-induced emission (AIE)-based imidazolium-type ionic liquids (ILs) were designed and synthesized for bacterial killing and imaging, cell labeling, and bacterial detection in blood cells. The AIE-based ILs showed antibacterial activities against both Escherichia coli and Staphylococcus aureus. The carbon chain length of substitution at the N3 position of the imidazolium cations highly affects the antibacterial properties of ILs. Owing to their AIE characteristics, the ILs could selectively capture fluorescence image of dead bacteria while killing the bacteria. The fluorescence intensity varied with the concentration of bacteria, indicating that AIE-based ILs has potential as an antibacterial material and an efficient probe for bacterial viability assay. In addition, the synthesized AIE-based ILs exhibit relatively low cytotoxicity and hemolysis rate and therefore potential for cell labeling, as well as bacterial detection in blood cells. STATEMENT OF SIGNIFICANCE: Bacteria are ubiquitous, especially the pathogenic bacteria, which pose a serious threat to human health. There is an urgent need for materials with efficient antibacterial properties and biocompatibility and without causing drug resistance. In this work, we synthesized a series of aggregation-induced emission (AIE)-doped imidazolium type ionic liquids (ILs) with multifunction potential of bacterial killing and imaging, cell labeling, and detection of bacteria from blood cells. The synthesized AIE-based ILs can image dead bacteria at the same time of killing these bacteria, which can avoid the fluorescent dyeing process. Simultaneously, the fluorescent imaging of dead bacteria can be distinguished by the naked eye, and the fluorescence intensity from the AIE-based ILs varied with the concentration of bacteria. In addition, the AIE-based ILs exhibit relatively low cytotoxicity and hemolysis rate and therefore potential for cell labeling as well as detection of bacteria from red blood cell suspension.
科研通智能强力驱动
Strongly Powered by AbleSci AI