已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

计算机科学 相似性(几何) 人工智能 平均意见得分 残余物 图像(数学) 卷积神经网络 计算机视觉 深度学习 鉴别器 模式识别(心理学) 算法 公制(单位) 电信 运营管理 探测器 经济
作者
Christian Ledig,Lucas Theis,Ferenc Huszár,José Caballero,Andrew Cunningham,Alejandro Acosta,Andrew P. Aitken,Alykhan Tejani,Johannes Totz,Zehan Wang,Wenzhe Shi
出处
期刊:Computer Vision and Pattern Recognition 被引量:10173
标识
DOI:10.1109/cvpr.2017.19
摘要

Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangchong888发布了新的文献求助10
1秒前
归于水云身完成签到 ,获得积分10
1秒前
1秒前
大个应助科研通管家采纳,获得10
2秒前
嫑嫑应助科研通管家采纳,获得20
2秒前
竹筏过海应助科研通管家采纳,获得30
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
3秒前
思源应助儿学化学打断腿采纳,获得10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
不安青牛应助科研通管家采纳,获得10
3秒前
3秒前
不安青牛应助科研通管家采纳,获得10
3秒前
HNNUYanY应助科研通管家采纳,获得10
3秒前
从容芮应助科研通管家采纳,获得30
3秒前
不安青牛应助科研通管家采纳,获得10
3秒前
5秒前
Summer完成签到 ,获得积分10
6秒前
zsy1234完成签到,获得积分10
6秒前
wwwcz发布了新的文献求助10
7秒前
小二郎应助清新的沛蓝采纳,获得10
8秒前
wangchong888完成签到,获得积分10
9秒前
9秒前
要文献啊完成签到 ,获得积分10
10秒前
10秒前
xxxr完成签到,获得积分10
13秒前
wwwcz完成签到,获得积分10
14秒前
艾七七发布了新的文献求助10
14秒前
14秒前
15秒前
zsy1234发布了新的文献求助10
15秒前
失眠的班完成签到 ,获得积分10
16秒前
细腻的语芙完成签到,获得积分20
16秒前
淡定落雁发布了新的文献求助10
19秒前
Jasper应助司空三毒采纳,获得10
20秒前
小巧凌晴完成签到,获得积分10
23秒前
24秒前
24秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417297
求助须知:如何正确求助?哪些是违规求助? 3018895
关于积分的说明 8885856
捐赠科研通 2706392
什么是DOI,文献DOI怎么找? 1484222
科研通“疑难数据库(出版商)”最低求助积分说明 685955
邀请新用户注册赠送积分活动 681108