Convolutional Neural Network-Based Robust Denoising of Low-Dose Computed Tomography Perfusion Maps

卷积神经网络 成像体模 降噪 灌注 灌注扫描 人工智能 计算机科学 模式识别(心理学) 反褶积 核医学 算法 放射科 医学
作者
Venkata S. Kadimesetty,Sreedevi Gutta,Sriram Ganapathy,Phaneendra K. Yalavarthy
出处
期刊:IEEE transactions on radiation and plasma medical sciences [Institute of Electrical and Electronics Engineers]
卷期号:3 (2): 137-152 被引量:43
标识
DOI:10.1109/trpms.2018.2860788
摘要

The low-dose computed tomography (CT) perfusion data has low signal-to-noise ratio resulting in derived perfusion maps being noisy. These low-quality maps typically requires a denoising step to improve their utility in real-time. The existing methods, including state-of-the-art online sparse perfusion deconvolution (SPD), largely relies on the convolutional model that may not be applicable in all cases of brain perfusion. In this paper, a denoising convolutional neural network (DCNN) was proposed that relies only on computed perfusion maps for performing the denoising step. The network was trained with a large number of low-dose digital brain phantom perfusion maps to provide an approximation to the corresponding high-dose perfusion maps. The batch normalization coupled with residual learning makes the trained model invariant to the dynamic range of the input low-dose perfusion maps. The denoising of the raw-data using the convolutional neural network was also attempted here and shown to have limited applicability in the low-dose CT perfusion cases. The digital perfusion phantom as well as in-vivo results indicate that the proposed DCNN applied in the derived map domain provides superior improvement compared to the online SPD with an added advantage of being computationally efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彤彤彤红红红完成签到,获得积分10
2秒前
2秒前
羊成木木发布了新的文献求助10
2秒前
WRL发布了新的文献求助10
3秒前
5秒前
搞怪莫茗应助xiaowen采纳,获得10
7秒前
无花果应助Shirley采纳,获得30
9秒前
9秒前
诸茹嫣发布了新的文献求助10
10秒前
10秒前
小白鞋完成签到 ,获得积分10
11秒前
fei发布了新的文献求助20
12秒前
852应助熊熊采纳,获得10
14秒前
14秒前
14秒前
14秒前
16秒前
踏实凡阳发布了新的文献求助10
16秒前
希望天下0贩的0应助CQ采纳,获得10
17秒前
糊糊应助Alisa采纳,获得10
17秒前
Lekai发布了新的文献求助10
18秒前
禾苗发布了新的文献求助10
20秒前
沉静的时光完成签到 ,获得积分10
21秒前
21秒前
23秒前
小刘完成签到,获得积分10
23秒前
grumpysquirel发布了新的文献求助30
23秒前
几两发布了新的文献求助10
23秒前
gez关闭了gez文献求助
23秒前
今后应助西瓜采纳,获得10
23秒前
26秒前
酷波er应助科研通管家采纳,获得10
27秒前
完美世界应助科研通管家采纳,获得10
27秒前
yznfly应助科研通管家采纳,获得30
27秒前
脑洞疼应助科研通管家采纳,获得10
28秒前
yznfly应助科研通管家采纳,获得30
28秒前
yznfly应助科研通管家采纳,获得30
28秒前
Ava应助科研通管家采纳,获得10
28秒前
钢铁科研应助科研通管家采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019