Convolutional Neural Network-Based Robust Denoising of Low-Dose Computed Tomography Perfusion Maps

卷积神经网络 成像体模 降噪 灌注 灌注扫描 人工智能 计算机科学 模式识别(心理学) 反褶积 核医学 算法 放射科 医学
作者
Venkata S. Kadimesetty,Sreedevi Gutta,Sriram Ganapathy,Phaneendra K. Yalavarthy
出处
期刊:IEEE transactions on radiation and plasma medical sciences [Institute of Electrical and Electronics Engineers]
卷期号:3 (2): 137-152 被引量:43
标识
DOI:10.1109/trpms.2018.2860788
摘要

The low-dose computed tomography (CT) perfusion data has low signal-to-noise ratio resulting in derived perfusion maps being noisy. These low-quality maps typically requires a denoising step to improve their utility in real-time. The existing methods, including state-of-the-art online sparse perfusion deconvolution (SPD), largely relies on the convolutional model that may not be applicable in all cases of brain perfusion. In this paper, a denoising convolutional neural network (DCNN) was proposed that relies only on computed perfusion maps for performing the denoising step. The network was trained with a large number of low-dose digital brain phantom perfusion maps to provide an approximation to the corresponding high-dose perfusion maps. The batch normalization coupled with residual learning makes the trained model invariant to the dynamic range of the input low-dose perfusion maps. The denoising of the raw-data using the convolutional neural network was also attempted here and shown to have limited applicability in the low-dose CT perfusion cases. The digital perfusion phantom as well as in-vivo results indicate that the proposed DCNN applied in the derived map domain provides superior improvement compared to the online SPD with an added advantage of being computationally efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曹志毅完成签到,获得积分10
刚刚
mito发布了新的文献求助10
1秒前
无悔呀发布了新的文献求助10
1秒前
2秒前
君君发布了新的文献求助10
2秒前
Yang完成签到,获得积分10
3秒前
风雨完成签到,获得积分10
3秒前
3秒前
4秒前
彭于晏应助小西采纳,获得30
4秒前
可爱的函函应助布布采纳,获得10
5秒前
6秒前
轩辕德地发布了新的文献求助10
6秒前
nine发布了新的文献求助30
6秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
7秒前
JamesPei应助小敦采纳,获得10
7秒前
今非发布了新的文献求助10
7秒前
李健的小迷弟应助通~采纳,获得30
7秒前
7秒前
7秒前
fanfan44390发布了新的文献求助10
7秒前
Zhang完成签到,获得积分10
8秒前
小二郎应助小田采纳,获得10
9秒前
9秒前
隐形曼青应助liike采纳,获得10
9秒前
phd发布了新的文献求助10
9秒前
9秒前
dingdong发布了新的文献求助30
9秒前
Orange应助清秀的语山采纳,获得50
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
10秒前
无花果应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
10秒前
大李包完成签到,获得积分10
10秒前
思源应助费城青年采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794