环面
初值问题
非线性系统
数学
数学分析
柯西问题
奇偶性(物理)
班级(哲学)
共振(粒子物理)
纯数学
数学物理
物理
量子力学
几何学
计算机科学
人工智能
作者
Roberto Feola,Felice Iandoli
出处
期刊:Annali della Scuola normale superiore di Pisa. Classe di scienze
[Scuola Normale Superiore - Edizioni della Normale]
日期:2021-03-30
卷期号:: 109-182
被引量:24
标识
DOI:10.2422/2036-2145.201811_003
摘要
In this paper we prove long time existence for a large class of fully nonlinear, reversible and parity preserving Schr\"odinger equations on the one dimensional torus. We show that for any initial condition even in $x$, regular enough and of size $\varepsilon$ sufficiently small, the lifespan of the solution is of order $\varepsilon^{-N}$ for any $N\in\mathbb{N}$ if some non resonance conditions are fulfilled. After a paralinearization of the equation we perform several para-differential changes of variables which diagonalize the system up to a very regularizing term. Once achieved the diagonalization, we construct modified energies for the solution by means of Birkhoff normal forms techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI