Machine-learning-based object detection in images for reservoir characterization: A case study of fracture detection in shales

地质学 表征(材料科学) 断裂(地质) 水力压裂 油页岩 矿物学 工作流程 人工智能 模式识别(心理学) 石油工程 计算机科学 材料科学 岩土工程 数据库 古生物学 纳米技术
作者
Xiao Yu Tian,Hugh Daigle
出处
期刊:The leading edge [Society of Exploration Geophysicists]
卷期号:37 (6): 435-442 被引量:24
标识
DOI:10.1190/tle37060435.1
摘要

Imaging tools are widely used in the petroleum industry to investigate structural features of reservoir rocks directly at multiple scales. Quantitative image analysis is often used to determine various rock properties, but it requires significant time and effort, particularly to analyze a large number of samples. Automated object detection represents a potential solution to this efficiency problem. This method uses computers to efficiently provide quantitative information for thousands of images. Automated fracture detection in scanning electron microscope (SEM) images is presented as an example to show the workflow of using advanced deep-learning tools for quantitative rock characterization. First, an automatic object-detection method is presented for fast identification and characterization of microfractures in shales. Using this approach, we analyzed 100 SEM images obtained from deformed and intact samples of a carbonate-rich shale and a siliceous shale with the goal of analyzing the abundance and characteristics of microfractures generated during hydraulic fracturing. Most of the fractures are detected with about 90% success rate relative to manual picking. Second, we obtained statistics of length and areal porosities of these fractures. The experimentally deformed samples had slightly more detectable microfractures (1.8 fractures/image on average compared to 1.6 fractures/image), and the microfractures induced by shear deformation tend to be short (<50 μm) in the Eagle Ford and long in the siliceous samples, presumably because of differences in rock fabric. In future work, this approach will be applied to characterize the shape and size of mineral grains and to analyze relationships between fractures and minerals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XLC关闭了XLC文献求助
刚刚
1秒前
zk200107完成签到,获得积分10
1秒前
1秒前
浮游应助aaa123采纳,获得10
2秒前
搜集达人应助zdj采纳,获得10
2秒前
ztgzttt完成签到,获得积分10
2秒前
2秒前
houj完成签到,获得积分10
2秒前
小轶灿完成签到,获得积分10
3秒前
小二郎应助He采纳,获得10
4秒前
4秒前
5秒前
慕青应助TT采纳,获得10
5秒前
小北发布了新的文献求助10
5秒前
曦越发布了新的文献求助10
5秒前
高大绝义发布了新的文献求助10
7秒前
急需文献开题的研一肿瘤学牛马完成签到,获得积分10
8秒前
小鲁发布了新的文献求助10
9秒前
玲家傻妞发布了新的文献求助10
10秒前
10秒前
宁天完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
安琦发布了新的文献求助10
12秒前
Cure完成签到 ,获得积分10
12秒前
天天快乐应助yoo采纳,获得10
13秒前
善学以致用应助曦越采纳,获得10
13秒前
JamesPei应助hh采纳,获得10
13秒前
Fafa完成签到,获得积分10
13秒前
14秒前
乐乐应助12345678采纳,获得10
14秒前
14秒前
14秒前
14秒前
oneday发布了新的文献求助10
14秒前
大模型应助能干吐司采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559