High-Response Room-Temperature NO2 Sensor and Ultrafast Humidity Sensor Based on SnO2 with Rich Oxygen Vacancy

材料科学 湿度 氧气 氧传感器 超短脉冲 空位缺陷 光电子学 纳米技术 光学 核磁共振 热力学 物理 有机化学 化学 激光器
作者
Yujia Zhong,Weiwei Li,Xuanliang Zhao,Xin Jiang,Shuyuan Lin,Zhen Zhen,Wenduo Chen,Dan Xie,Hongwei Zhu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (14): 13441-13449 被引量:128
标识
DOI:10.1021/acsami.9b01737
摘要

SnO2 nanosheets with abundant vacancies (designated as SnO2–x) have been successfully prepared by annealing SnSe nanosheets in Argon. The transmission electron microscopy results of the prepared SnO2 nanosheets indicated that high-density SnO2–x nanoplates with the size of 5–10 nm were distributed on the surface of amorphous carbon. After annealing, the acquired SnO2–x/amorphous carbon retained the square morphology. The stoichiometric ratio of Sn/O = 1:1.55 confirmed that oxygen vacancies were abundant in SnO2 nanosheets. The prepared SnO2–x exhibited excellent performance of sensing NO2 at room temperature. The response of the SnO2–x-based sensor to 5 ppm NO2 was determined to be 16 with the response time and recovery time of 331 and 1057 s, respectively, which is superior to those of most reported room-temperature NO2 sensors based on SnO2 and other materials. When the humidity varied from 30 to 40%, ΔR/R was 0.025. The ultrafast humidity response (52 ms) and recovery (140 ms) are competitive compared with other state-of-art humidity sensors. According to the mechanistic study, the excellent sensing performance of SnO2–x is attributed to its special structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
月皎完成签到 ,获得积分10
2秒前
iris2333发布了新的文献求助10
3秒前
烟花应助wzz采纳,获得10
3秒前
小凯完成签到,获得积分10
3秒前
狂野风华完成签到 ,获得积分10
3秒前
布丁完成签到,获得积分10
4秒前
美好斓发布了新的文献求助30
4秒前
humorlife完成签到,获得积分10
5秒前
selean完成签到,获得积分10
5秒前
6秒前
一玮完成签到 ,获得积分10
7秒前
垃圾桶完成签到 ,获得积分10
7秒前
福多多完成签到 ,获得积分10
8秒前
小蘑菇应助酷炫的__采纳,获得10
9秒前
hydrogen完成签到,获得积分10
9秒前
大模型应助神经蛙采纳,获得10
10秒前
凡夫俗子完成签到,获得积分10
10秒前
F_ken发布了新的文献求助10
11秒前
Jasper应助无私采白采纳,获得10
12秒前
拼搏冬瓜完成签到 ,获得积分10
13秒前
13秒前
和谐白云完成签到,获得积分10
17秒前
18秒前
18秒前
小小发布了新的文献求助30
19秒前
超级日光完成签到 ,获得积分20
20秒前
Rainsoul完成签到 ,获得积分10
21秒前
21秒前
22秒前
23秒前
lf完成签到,获得积分10
23秒前
zict2010发布了新的文献求助10
23秒前
上善若水呦完成签到 ,获得积分10
23秒前
一一发布了新的文献求助10
24秒前
滴滴答答完成签到,获得积分10
24秒前
wzz发布了新的文献求助10
26秒前
26秒前
Owen应助winnie采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539792
求助须知:如何正确求助?哪些是违规求助? 4626553
关于积分的说明 14599759
捐赠科研通 4567423
什么是DOI,文献DOI怎么找? 2504037
邀请新用户注册赠送积分活动 1481750
关于科研通互助平台的介绍 1453372