Hydration and dehydration of monovalent cations near an electrode surface

离子 电极 电解质 化学 离子半径 吸附 离子键合 电极电位 分子 溶剂化壳 分析化学(期刊) 化学物理 无机化学 物理化学 溶剂化 色谱法 有机化学
作者
Kenji Kiyohara,Riho Minami
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:149 (1) 被引量:18
标识
DOI:10.1063/1.5037679
摘要

The mechanism of hydration and dehydration of monovalent ions, Li+, Na+, K+, and Cs+, in a dilute solution near an electrode surface was studied by molecular dynamics simulations. The potentials of mean force for these ions were calculated as a function of the distance from the electrode surface and the potential barriers for dehydrating the first and the second hydration shell near the electrode surface and were estimated for each ion species. It was found that the mechanism of hydration for Li+ is distinct from those for Na+, K+, and Cs+. Penetration of ions into the first layer of water molecules on the electrode surface is unlikely to occur for the case of Li+, while that would occur with certain probabilities for the case of Na+, K+, or Cs+, whether or not voltage is applied to the electrode. Li+ ions would be adsorbed on the electrode surface in a doubly hydrated form with a significant probability, while Na+, K+, and Cs+ ions would be adsorbed most likely in a singly hydrated form. Furthermore, the theory of ionic radii, which has been successfully used in the analysis of bulk solutions, was applied to the electrode/electrolyte interface. It was found that the theory of ionic radii is also useful in explaining the structural behaviors of ions near an electrode surface. The distance between an ion and the layers of water molecules on the electrode surface showed almost linear dependence on the radius of the ion, as predicted by the theory of ionic radii. Analysis of the deviation from the linearity showed that Li+ ions are most likely adsorbed in the first layer of water molecules on the electrode surface, while Na+, K+, and Cs+ ions are adsorbed on the second layer of water molecules. These analyses indicate that Li+ is a structure maker, while Na+, K+, and Cs+ are structure breakers, which is consistent with the widely accepted idea in explaining the behaviors of the bulk solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小木虫完成签到,获得积分10
1秒前
小二郎应助无情山水采纳,获得10
1秒前
1秒前
大晨发布了新的文献求助10
1秒前
赖道之发布了新的文献求助10
2秒前
2秒前
1111发布了新的文献求助10
2秒前
坤坤发布了新的文献求助10
2秒前
酷波er应助包容的剑采纳,获得10
2秒前
3秒前
3秒前
genoy完成签到,获得积分10
3秒前
乔乔完成签到,获得积分10
3秒前
吾问无为谓完成签到,获得积分20
5秒前
5秒前
5秒前
花椒泡茶完成签到,获得积分10
5秒前
5秒前
小马哥完成签到,获得积分20
5秒前
5秒前
6秒前
mkW完成签到,获得积分10
6秒前
读研好难完成签到,获得积分10
6秒前
跳跃的罡发布了新的文献求助10
6秒前
论文侠完成签到 ,获得积分10
6秒前
神勇的雅香应助梓榆采纳,获得10
6秒前
6秒前
深情安青应助Mlwwq采纳,获得10
6秒前
脑洞疼应助耿强采纳,获得10
7秒前
江梦松完成签到,获得积分10
7秒前
7秒前
7秒前
liu发布了新的文献求助10
8秒前
9秒前
9秒前
水獭发布了新的文献求助10
10秒前
奥雷里亚诺的小金鱼完成签到,获得积分10
10秒前
10秒前
LZZ发布了新的文献求助10
10秒前
昵称发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762