计算机科学
人工神经网络
校准
过程(计算)
平版印刷术
人工智能
节点(物理)
数据建模
机器学习
工程类
软件工程
程序设计语言
结构工程
统计
艺术
视觉艺术
数学
作者
Kostas Adam,Shashidhara K. Ganjugunte,Clement Moyroud,Kanstantsin Shchehlik,Michael Lam,Andrew Burbine,Germain Fenger,Yuri Granik
摘要
We show how combining machine learning with physical models can improve the overall accuracy of modeling the lithographic process for OPC applications by up to 40%. This level of model accuracy improvement is critical to meet the stringent requirements of the 5nm node and below. We demonstrate how the judicious design of the neural network can create a model capable of high accuracy and high contour quality, even when no contour data is available. This allows the neural network model to be introduced without disrupting the model calibration flow used in OPC.
科研通智能强力驱动
Strongly Powered by AbleSci AI