Research on the Majority Decision Algorithm based on WeChat sentiment classification

朴素贝叶斯分类器 计算机科学 人工智能 支持向量机 情绪分析 机器学习 精确性和召回率 自然语言处理
作者
Sheng Tai Zhang,Fei Fei Wang,Fan Duo,Ju Liang Zhang
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:35 (3): 2975-2984 被引量:21
标识
DOI:10.3233/jifs-169653
摘要

Sentiment analysis mainly studies the emotional tendencies of texts from grammar, semantic rules and other aspects. The texts from social network are characterized by less words, irregular grammar, data noise and so on, which have increased the difficulty of emotion analysis. In order to improve t he performance of machine learning in sentiment analysis, this study proposed the Majority Decision Algorithm to classify the emotional tendentious of the text in WeChat, combined the characteristics of five classifiers and integrated the classification results of five classifiers, eventually the text can be classified in WeChat. Firstly, this study utilized the BlueStacks to crawl the cache of WeChat Moment developed by Tencent company. Secondly, the cache was processed by Python to get the WeChat dataset. After the Chinese word segmentation, data cleaning and segmentation, the sentiment classification experiment were carried out using different classifiers. Finally, a Majority Decision Algorithm composed of five classifiers was established. It included, Naive Bayes (sklearn), Naive Bayes (SnowNLP), SVM (linear), SVM (RBF) and SGD. Then, the comparison was carried out between the performance of the algorithm and the five classifiers. Results show that the precision rates of the five classifiers are 0.8598, 0.8154, 0.8511, 0.8739 and 0.8678; the recall rates are 0.8544, 0.8482, 0.9380, 0.9226 and 0.9349; F1 scores are 0.8571, 0.8315, 0.8924, 0.8975 and 0.9001, respectively. The algorithm of the Precision rate, Recall rate and F1 score were 0.8804, 0.9349 and 0.9069, respectively, indicating that algorithm in current study significantly improved the performance, which can be effectively applied into the new text form of WeChat Moment. The study can provide theoretical reference for sentiment classification of Chinese text based on machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醋溜荧光大蒜完成签到 ,获得积分10
刚刚
英姑应助雯小瑾采纳,获得10
刚刚
充电宝应助坐看云起时采纳,获得10
1秒前
赘婿应助Hh采纳,获得10
3秒前
脑洞疼应助岁月星辰采纳,获得10
3秒前
认真的飞扬完成签到,获得积分10
4秒前
li完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
7秒前
8秒前
AronHUANG完成签到,获得积分10
8秒前
10秒前
chen发布了新的文献求助10
10秒前
正直的闭月完成签到,获得积分10
11秒前
kkkkkk发布了新的文献求助10
11秒前
大象放冰箱完成签到,获得积分10
12秒前
HHD发布了新的文献求助10
12秒前
Qiqige应助小橘子采纳,获得10
13秒前
眯眯眼的篮球应助小橘子采纳,获得10
13秒前
爱你呃不可能应助小橘子采纳,获得10
13秒前
鸭梨发布了新的文献求助10
13秒前
科研通AI5应助zzzzz采纳,获得10
13秒前
13秒前
JIU夭发布了新的文献求助10
13秒前
15秒前
七叶完成签到,获得积分10
16秒前
今后应助LBF采纳,获得10
16秒前
岁月星辰完成签到,获得积分10
17秒前
wanci应助南城采纳,获得10
18秒前
RC_Wang应助HHD采纳,获得10
20秒前
打打应助HHD采纳,获得10
20秒前
爆米花应助HHD采纳,获得10
20秒前
bkagyin应助HHD采纳,获得10
20秒前
搜集达人应助HHD采纳,获得10
20秒前
科研通AI5应助HHD采纳,获得10
20秒前
Lucas应助HHD采纳,获得10
20秒前
PenguinYW应助HHD采纳,获得10
21秒前
汉堡包应助HHD采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514599
求助须知:如何正确求助?哪些是违规求助? 3096989
关于积分的说明 9233427
捐赠科研通 2791987
什么是DOI,文献DOI怎么找? 1532191
邀请新用户注册赠送积分活动 711826
科研通“疑难数据库(出版商)”最低求助积分说明 707031