IMPROVEMENT OF FINITE ELEMENT MESH QUALITY BY USING GEOMETRICAL QUALITY MEASURES AND OPTIMIZATION

多边形网格 有限元法 形状优化 度量(数据仓库) 数学优化 计算机科学 反向 联轴节(管道) 数学 几何学 机械工程 结构工程 工程类 数据挖掘 计算机图形学(图像)
作者
Marko Kegl,Boštjan Harl,Dejan Dinevski
出处
期刊:Proceedings of International Structural Engineering and Construction [ISEC Press]
卷期号:2 (1)
标识
DOI:10.14455/isec.res.2015.213
摘要

This paper discusses possible procedures to improve finite element meshes in order to enable an accurate and stable numerical analysis processes. In general, the process of mesh improvement has to address three main aspects: mesh untangling (removal or fix of inverted finite elements), improvement of element shape, and making the element sizes more uniform. This paper focusses on the last two aspects: improving shape and size uniformity. This problem is addressed from purely geometrical aspect and by engaging optimization methods; thus, stress/strain related finite element quality measures are not considered. Two various element quality measures are discussed with emphasis on their coupling with an adequate optimization procedure. These two measures are the inverse mean ratio measure and the size measure. The first one addresses the shape and size of finite elements, but concentrates more on the shape. The later one, on the other hand, addresses only finite element size. Since mesh improvement tasks are typical multi-objective optimization problems, the paper also addresses briefly the procedure how to transform the multi-objective problem into a usual single-objective one that can be solved by employing standard optimization techniques. In this work a gradient-based approximation method was employed to do the optimization. The discussed theory is numerically tested on simply deformed meshes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
yhm7426发布了新的文献求助30
2秒前
22222发布了新的文献求助10
2秒前
2秒前
深情安青应助xuhandi采纳,获得10
2秒前
Brightan发布了新的文献求助10
3秒前
大个应助红糖发糕采纳,获得30
3秒前
猫猫猫完成签到,获得积分20
3秒前
3秒前
3秒前
美丽蕨菜子应助吃个馍馍采纳,获得10
4秒前
5秒前
高伟杰完成签到,获得积分10
5秒前
bkagyin应助彬彬采纳,获得10
5秒前
大个应助佚名采纳,获得30
5秒前
5秒前
6秒前
CRUSADER发布了新的文献求助10
6秒前
yu完成签到,获得积分10
7秒前
Hello应助胡树采纳,获得10
7秒前
7秒前
共享精神应助kk采纳,获得30
8秒前
che发布了新的文献求助10
8秒前
8秒前
所所应助Levy采纳,获得10
8秒前
谷雨应助miles采纳,获得10
8秒前
猫猫猫发布了新的文献求助10
9秒前
chickensandwhich完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
10秒前
谨慎的擎宇完成签到,获得积分10
10秒前
weddcf发布了新的文献求助10
11秒前
hululaoqi发布了新的文献求助10
12秒前
13秒前
酷波er应助飘逸的雪碧采纳,获得10
13秒前
无花果应助fash采纳,获得10
13秒前
xuhandi发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382