Real-World Evidence, Causal Inference, and Machine Learning

因果推理 机器学习 观察研究 人工智能 计算机科学 推论 数据科学 统计推断 计量经济学 医学 数学 统计 病理 经济
作者
William H. Crown
出处
期刊:Value in Health [Elsevier]
卷期号:22 (5): 587-592 被引量:32
标识
DOI:10.1016/j.jval.2019.03.001
摘要

The current focus on real world evidence (RWE) is occurring at a time when at least two major trends are converging. First, is the progress made in observational research design and methods over the past decade. Second, the development of numerous large observational healthcare databases around the world is creating repositories of improved data assets to support observational research. OBJECTIVE: This paper examines the implications of the improvements in observational methods and research design, as well as the growing availability of real world data for the quality of RWE. These developments have been very positive. On the other hand, unstructured data, such as medical notes, and the sparcity of data created by merging multiple data assets are not easily handled by traditional health services research statistical methods. In response, machine learning methods are gaining increased traction as potential tools for analyzing massive, complex datasets. CONCLUSIONS: Machine learning methods have traditionally been used for classification and prediction, rather than causal inference. The prediction capabilities of machine learning are valuable by themselves. However, using machine learning for causal inference is still evolving. Machine learning can be used for hypothesis generation, followed by the application of traditional causal methods. But relatively recent developments, such as targeted maximum likelihood methods, are directly integrating machine learning with causal inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不配.应助Joy采纳,获得10
1秒前
1秒前
1秒前
雪Q发布了新的文献求助10
1秒前
2秒前
3秒前
jacob258发布了新的文献求助10
3秒前
waa发布了新的文献求助10
3秒前
知性的牛青完成签到,获得积分10
3秒前
柔弱丝袜完成签到,获得积分20
4秒前
4秒前
4秒前
sxy完成签到,获得积分20
5秒前
5秒前
萍萍子发布了新的文献求助10
5秒前
5秒前
5秒前
ryan发布了新的文献求助10
6秒前
李健的粉丝团团长应助ag采纳,获得10
6秒前
好困应助KIKI采纳,获得10
7秒前
harina完成签到,获得积分10
7秒前
7秒前
usee发布了新的文献求助10
7秒前
忧伤的帆布鞋完成签到,获得积分10
7秒前
leonarda1314发布了新的文献求助10
7秒前
7秒前
星辰大海应助坚强的严青采纳,获得10
8秒前
8秒前
李健的小迷弟应助mbf采纳,获得10
8秒前
多宝发布了新的文献求助10
9秒前
苏卿应助管理想采纳,获得10
9秒前
上官若男应助刘斌采纳,获得10
10秒前
酷波er应助呼之欲出采纳,获得10
10秒前
DarylK完成签到 ,获得积分20
10秒前
小恰发布了新的文献求助10
10秒前
LSDragon666完成签到,获得积分20
10秒前
10秒前
CC发布了新的文献求助10
10秒前
美好箴发布了新的文献求助30
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152976
求助须知:如何正确求助?哪些是违规求助? 2804157
关于积分的说明 7857469
捐赠科研通 2461911
什么是DOI,文献DOI怎么找? 1310570
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601788