自愈水凝胶
过氧化氢
动力学
化学
辣根过氧化物酶
乙二醇
粘弹性
聚合物
流变学
化学工程
PEG比率
凝点
动态力学分析
高分子化学
材料科学
有机化学
酶
物理
财务
量子力学
工程类
经济
复合材料
作者
Raul Sun Han Chang,Ching-Wei Lee,Sara Pedrón,Brendan A.C. Harley,Simon A. Rogers
出处
期刊:Biomacromolecules
[American Chemical Society]
日期:2019-05-02
卷期号:20 (6): 2198-2206
被引量:38
标识
DOI:10.1021/acs.biomac.9b00116
摘要
The diverse requirements of hydrogels for tissue engineering motivate the development of cross-linking reactions to fabricate hydrogel networks with specific features, particularly those amenable to the activity of biological materials (e.g., cells, proteins) that do not require exposure to UV light. We describe gelation kinetics for a library of thiolated poly(ethylene glycol) sulfhydryl hydrogels undergoing enzymatic cross-linking via horseradish peroxidase, a catalyst-driven reaction activated by hydrogen peroxide. We report the use of small-amplitude oscillatory shear (SAOS) to quantify gelation kinetics as a function of reaction conditions (hydrogen peroxide and polymer concentrations). We employ a novel approach to monitor the change of viscoelastic properties of hydrogels over the course of gelation (Δ tgel) via the time derivative of the storage modulus (d G'/d t). This approach, fundamentally distinct from traditional methods for defining a gel point, quantifies the time interval over which gelation events occur. We report that gelation depends on peroxide and polymer concentrations as well as system temperature, where the effects of hydrogen peroxide tend to saturate over a critical concentration. Further, this cross-linking reaction can be reversed using l-cysteine for rapid cell isolation, and the rate of hydrogel dissolution can be monitored using SAOS.
科研通智能强力驱动
Strongly Powered by AbleSci AI