髓鞘
神经科学
多发性硬化
少突胶质细胞
中枢神经系统
小胶质细胞
白质
脱髓鞘病
生物
视神经脊髓炎
神经系统
实验性自身免疫性脑脊髓炎
医学
免疫学
磁共振成像
炎症
放射科
作者
Christine Stadelmann,Sebastian Timmler,Alonso Barrantes‐Freer,Mikael Simons
标识
DOI:10.1152/physrev.00031.2018
摘要
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI