Sequence-based prediction of protein-protein interaction sites by simplified long short-term memory network

计算机科学 人工智能 机器学习 深度学习 试验装置 集合(抽象数据类型) 构造(python库) 任务(项目管理) 期限(时间) 数据挖掘 量子力学 物理 经济 管理 程序设计语言
作者
Buzhong Zhang,Jinyan Li,Lijun Quan,Yu Chen,Qiang Lü
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:357: 86-100 被引量:103
标识
DOI:10.1016/j.neucom.2019.05.013
摘要

Proteins often interact with each other and form protein complexes to carry out various biochemical activities. Knowledge of the interaction sites is helpful for understanding disease mechanisms and drug design. Accurate prediction of the interaction sites from protein sequences is still a challenging task and severe imbalance data also decreased the performance of computational methods. In this study, we propose to use a deep learning method for improving the imbalanced prediction of protein interaction sites. We develop a new simplified long short-term memory (SLSTM) network to implement a deep learning architecture (named DLPred). To deal with the imbalanced classification in the deep learning model, we explore three new ideas. First, our collection of the training data is to construct a set of protein sequences, instead of a set of just single residues, to retain the entire sequential completeness of each protein. Second, a new penalization factor is appended to the loss function such that the penalization to the non-interaction site loss can be effectively enhanced. Third, multi-task learning of interaction sites and residue solvent accessibility prediction are used for correcting the preference of the prediction model on the non-interaction sites. Our model is evaluated on three public datasets: Dset186, Dtestset72 and PDBtestset164. Compared with current state-of-the-art methods, DLPred is able to significantly improve the predictive accuracies and AUC values while improving the F-measure. The training dataset, test datasets, a standalone version of DLPred and online service are available at http://qianglab.scst.suda.edu.cn/dlp/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
lbh860110完成签到,获得积分10
3秒前
粱自中完成签到,获得积分10
3秒前
3秒前
CodeCraft应助qqqq采纳,获得10
4秒前
4秒前
酷酷的幼枫完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助30
5秒前
6秒前
list应助一投就中采纳,获得10
7秒前
2947292085发布了新的文献求助10
7秒前
8秒前
10秒前
弎夜发布了新的文献求助10
10秒前
爆米花应助细心妙菡采纳,获得10
10秒前
Dr_Sean完成签到,获得积分10
11秒前
12秒前
奈奈泥发布了新的文献求助10
13秒前
lbh860110发布了新的文献求助10
13秒前
Ava应助哈哈哈采纳,获得10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
18秒前
感动迎蕾完成签到,获得积分10
18秒前
19秒前
20秒前
剁剁剁发布了新的文献求助10
20秒前
AA完成签到,获得积分10
20秒前
健壮仙人掌完成签到 ,获得积分10
20秒前
大力的宝川完成签到 ,获得积分10
21秒前
22秒前
狄1234567发布了新的文献求助10
22秒前
22秒前
zeng123完成签到,获得积分20
22秒前
2947292085完成签到,获得积分20
22秒前
qqqq发布了新的文献求助10
23秒前
24秒前
wangshaung完成签到,获得积分10
24秒前
25秒前
幸福妙柏发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660657
求助须知:如何正确求助?哪些是违规求助? 3221940
关于积分的说明 9742294
捐赠科研通 2931235
什么是DOI,文献DOI怎么找? 1604908
邀请新用户注册赠送积分活动 757618
科研通“疑难数据库(出版商)”最低求助积分说明 734461