化学
电化学
矿化(土壤科学)
氧化锡
锡
核化学
无机化学
氧化物
电极
物理化学
有机化学
氮气
作者
Pralay Gayen,Chen Chen,Jeremiah T. Abiade,Brian P. Chaplin
标识
DOI:10.1021/acs.est.8b04103
摘要
This research focused on improving mineralization rates during the advanced electrochemical oxidation treatment of agricultural water contaminants. For the first time, bismuth-doped tin oxide (BDTO) catalysts were deposited on Magnéli phase (TinO2n–1, n = 4–6) reactive electrochemical membranes (REMs). Terephthalic acid (TA) was used as a OH• probe, whereas atrazine (ATZ) and clothianidin (CDN) were chosen as model agricultural water contaminants. The BDTO-deposited REMs (REM/BDTO) showed higher compound removal than the REM, due to enhanced OH• production. At 3.5 V/SHE, complete mineralization of TA, ATZ, and CDN was achieved for the REM/BDTO upon a single pass in the reactor (residence time ∼3.6 s). Energy consumption for REM/BDTO was as much as 31-fold lower than the REM, with minimal values per log removal of <0.53 kWh m–3 for TA (3.5 V/SHE), <0.42 kWh m–3 for ATZ (3.0 V/SHE), and 0.83 kWh m–3 for CDN (3.0 V/SHE). Density functional theory simulations provided potential dependent activation energy profiles for ATZ, CDN, and various oxidation products. Efficient mass transfer and a reaction mechanism involving direct electron transfer and reaction with OH• were responsible for the rapid and complete mineralization of ATZ and CDN at very short residence times.
科研通智能强力驱动
Strongly Powered by AbleSci AI