声子
激发态
飞秒
超快电子衍射
放松(心理学)
绝热过程
凝聚态物理
电子
激发
人口
材料科学
分子物理学
物理
原子物理学
光学
激光器
量子力学
社会学
人口学
社会心理学
心理学
作者
Aravind Krishnamoorthy,Ming‐Fu Lin,Xiang Zhang,Clemens Weninger,Ruru Ma,Alexander Britz,Chandra Sekhar Tiwary,Vidya Kochat,Amey Apte,Jie Yang,Suji Park,Renkai Li,Xiaozhe Shen,Xijie Wang,Rajiv K. Kalia,Aiichiro Nakano,Fuyuki Shimojo,David Fritz,Uwe Bergmann,Pulickel M. Ajayan,Priya Vashishta
出处
期刊:Nano Letters
[American Chemical Society]
日期:2019-06-24
卷期号:19 (8): 4981-4989
被引量:30
标识
DOI:10.1021/acs.nanolett.9b01179
摘要
The light-induced selective population of short-lived far-from-equilibrium vibration modes is a promising approach for controlling ultrafast and irreversible structural changes in functional nanomaterials. However, this requires a detailed understanding of the dynamics and evolution of these phonon modes and their coupling to the excited-state electronic structure. Here, we combine femtosecond mega-electronvolt electron diffraction experiments on a prototypical layered material, MoTe2, with non-adiabatic quantum molecular dynamics simulations and ab initio electronic structure calculations to show how non-radiative energy relaxation pathways for excited electrons can be tuned by controlling the optical excitation energy. We show how the dominant intravalley and intervalley scattering mechanisms for hot and band-edge electrons leads to markedly different transient phonon populations evident in electron diffraction patterns. This understanding of how tuning optical excitations affect phonon populations and atomic motion is critical for efficiently controlling light-induced structural transitions of optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI