双金属片
材料科学
纳米颗粒
X射线光电子能谱
高分辨率透射电子显微镜
氧化还原
电子转移
电催化剂
化学工程
氮化碳
非阻塞I/O
拉曼光谱
催化作用
纳米技术
冶金
电化学
电极
化学
透射电子显微镜
光化学
金属
光催化
物理化学
光学
物理
生物化学
工程类
作者
Izabela S. Pieta,Anuj K. Rathi,Piotr Pieta,Robert Nowakowski,Marcin Hołdyński,Marcin Pisarek,Agnieszka Kamińska,Manoj B. Gawande,Radek Zbořil
标识
DOI:10.1016/j.apcatb.2018.10.072
摘要
Ni, Cu and Cu–Ni nanostructures have been fabricated and homogeneously embedded on ultrathin two-dimensional (2D) carbon nitride (g-C3N4), and the surface morphology and composition of the resulting hybrid nanostructures were studied by XRD, TEM, HRTEM-elemental mapping, Raman spectroscopy and XPS. The new hierarchical hetero-structures dropcasted on GC anodes have been visualised by SEM and their catalytic performance have been examined in methanol electrooxidation reaction (MOR) under alkaline conditions. Nanosized Ni particles dispersed finely over g-C3N4 are very active electrocatalysts with MOR onset at potential 0.35 V and charge transfer resistance 0.12 kΩ. The stability of modyfied GC electrodes, examined under chronoamperometric conditions showed that for electrode loading with 4% (wt. %) of NiO the stable current density ca. 36 A g−1 (12 A cm2) was obtained during whole experiment (up to 160 min). For all catalyst studied the curent density obtained during MOR reaction was enhanced when electrode was iluminated by UV light λ∼400 nm, and the highest value were obtained for 4% Ni/CN catalyst ca. 127 A g−1 (22 A cm2). The Cu incorporation in the hybrid material evoke loss of activity mostly due to Cu+ irreversible reduction/oxidation to Cu° and Cu2+, CuO segregation and influencing electron transfer process which results in the increasing in the redox potential. These results represent an important step towards light-enhanced electro-reactive systems and sensors in which heterojunction formation can facilitate electron-hole separation and enable more efficient energy transfer.
科研通智能强力驱动
Strongly Powered by AbleSci AI