检出限
分析化学(期刊)
电化学气体传感器
循环伏安法
介电谱
材料科学
拉曼光谱
玻璃碳
电极
扫描电子显微镜
电化学
化学
色谱法
物理化学
物理
复合材料
光学
作者
Edervaldo Buffon,Nelson Ramos Stradiotto
标识
DOI:10.1016/j.snb.2019.02.059
摘要
In this work, the first electrochemical sensor for determination of hexahydrofarnesol in aviation biokerosene was developed by electropolymerization of a molecularly imprinted ortho-phenylenediamine film on a glassy carbon electrode. The modified electrode was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, RAMAN spectroscopy and atomic force microscopy. Parameters that influence the performance of the imprinted sensor, such as the molar ratio between functional monomer and template molecule, number of cycles and pH used in the electropolymerization, extraction time of the template molecule, and time of rebinding of the hexahydrofarnesol molecules in the imprinted cavities were optimized. The developed sensor presented the following linear ranges: 4.0 × 10−8 to 1.5 × 10-7 mol L-1 and 1.5 × 10-7 to 1.5 × 10-6 mol L-1. The apparent dissociation constant (KD) for the first linear range of this device calculated by the isothermal Langmuir adsorption model was 4.8 × 10-7 mol L-1. The limit of detection, limit of quantification and sensitivity were 1.2 × 10−8 mol L-1, 4.1 × 10−8 mol L-1 and 67 A L mol-1 (n = 3) respectively. The sensor showed considerable inter-day and intra-day repeatability, with RSD values ≤ 4.8%, and had 96% of its initial current preserved after being stored for 10 days in contact with air at room temperature. The developed method was successfully applied toward the determination of hexahydrofarnesol in aviation biokerosene. Mean recoveries ranged from 97.6% to 105.8%, with RSDs within the interval of 1.7% to 3.9%. These results indicate that the method developed has a good accuracy for the determination of hexahydrofarnesol.
科研通智能强力驱动
Strongly Powered by AbleSci AI