Intensified p-Xylene Production Process through Toluene and Methanol Alkylation

甲苯 甲醇 二甲苯 烷基化 化学 对二甲苯 选择性 有机化学 化学工程 催化作用 工程类
作者
Jing Liu,Yu Yang,Shun’an Wei,Weifeng Shen,Nikolaos Rakovitis,Jie Li
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:57 (38): 12829-12841 被引量:35
标识
DOI:10.1021/acs.iecr.8b00681
摘要

The production of p-xylene has received more and more attention, since it is widely used in chemical synthetic resin, pharmaceutical, chemical fiber, and pesticide industries. The p-xylene production through toluene alkylation is considered to be more promising due to high selectivity of p-xylene and little environmental impact compared to other methods. Although the existing p-xylene production process through toluene alkylation could achieve high selectivity of p-xylene, the methanol conversion is still as low as 70.0%, requiring methanol recovery and recycle system and resulting in additional loss of toluene in the downstream separation of light component, methanol, and toluene. On the basis of these findings, an intensified p-xylene production process through toluene alkylation with complete methanol conversion is proposed and simulated using Aspen Plus V8.4. The optimal operating conditions for the alkylation reactor are obtained using the sensitivity analysis tool and sequential quadratic programming (SQP) optimization solver in Aspen Plus V8.4. It is found that the methanol conversion could reach 98.0% with a p-xylene selectivity of 92.0% through increasing the reaction temperature to 442.5 °C and pressure to 4.0 bar compared to the existing process, resulting in the removal of methanol recovery and recycle system and less toluene loss in the downstream separation. The comparative evaluations demonstrate that the proposed process is more efficient than the existing process based on economic and environmental metrics. The overall TAC is reduced by 4.71% and CO2 emissions are decreased by 40.2% compared to the existing process without heat integration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷豌豆发布了新的文献求助10
1秒前
1秒前
机智的天天完成签到 ,获得积分10
1秒前
kakaC完成签到,获得积分10
1秒前
万能图书馆应助XunlongJi采纳,获得10
1秒前
1秒前
快乐慕灵完成签到,获得积分10
2秒前
QDU应助要减肥的鹰采纳,获得10
2秒前
崔尔蓉完成签到,获得积分10
3秒前
傻傻的念瑶完成签到 ,获得积分10
3秒前
Haifeng发布了新的文献求助10
3秒前
3秒前
Yang完成签到,获得积分20
4秒前
megan完成签到,获得积分10
4秒前
5秒前
heerkeli发布了新的文献求助10
6秒前
Hey发布了新的文献求助10
6秒前
LiLi完成签到,获得积分10
7秒前
Biogene发布了新的文献求助10
8秒前
锦诗完成签到,获得积分10
8秒前
善学以致用应助王冰洁采纳,获得10
8秒前
勤恳的一斩完成签到,获得积分10
9秒前
9秒前
Ustinian发布了新的文献求助10
9秒前
XTNI完成签到 ,获得积分10
9秒前
HXuer完成签到,获得积分10
9秒前
0816my应助luu采纳,获得10
10秒前
he完成签到,获得积分10
10秒前
汉堡包应助VOLUNTINA采纳,获得10
11秒前
Tao完成签到,获得积分10
11秒前
土豆丝完成签到 ,获得积分10
11秒前
wallonce发布了新的文献求助10
12秒前
fan完成签到 ,获得积分10
12秒前
PCEEN发布了新的文献求助10
13秒前
he发布了新的文献求助10
13秒前
14秒前
shenzhou9发布了新的文献求助10
14秒前
叶泽完成签到,获得积分10
14秒前
透明人完成签到,获得积分10
15秒前
FG发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298999
求助须知:如何正确求助?哪些是违规求助? 2934058
关于积分的说明 8466290
捐赠科研通 2607414
什么是DOI,文献DOI怎么找? 1423664
科研通“疑难数据库(出版商)”最低求助积分说明 661661
邀请新用户注册赠送积分活动 645286