A Fast kNN-Based Approach for Time Sensitive Anomaly Detection over Data Streams

数据挖掘 数据流 异常(物理) 实时计算 入侵检测系统 模式识别(心理学) 流式数据
作者
Guangjun Wu,Zhihui Zhao,Ge Fu,Wang Haiping,Yong Wang,Wang Zhenyu,Junteng Hou,Liang Huang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 59-74 被引量:4
标识
DOI:10.1007/978-3-030-22741-8_5
摘要

Anomaly detection is an important data mining method aiming to discover outliers that show significant diversion from their expected behavior. A widely used criteria for determining outliers is based on the number of their neighboring elements, which are referred to as Nearest Neighbors (NN). Existing kNN-based Anomaly Detection (kNN-AD) algorithms cannot detect streaming outliers, which present time sensitive abnormal behavior characteristics in different time intervals. In this paper, we propose a fast kNN-based approach for Time Sensitive Anomaly Detection (kNN-TSAD), which can find outliers that present different behavior characteristics, including normal and abnormal characteristics, within different time intervals. The core idea of our proposal is that we combine the model of sliding window with Locality Sensitive Hashing (LSH) to monitor streaming elements distribution as well as the number of their Nearest Neighbors as time progresses. We use an \(\epsilon \)-approximation scheme to implement the model of sliding window to compute Nearest Neighbors on the fly. We conduct widely experiments to examine our approach for time sensitive anomaly detection using three real-world data sets. The results show that our approach can achieve significant improvement on recall and precision for anomaly detection within different time intervals. Especially, our approach achieves two orders of magnitude improvement on time consumption for streaming anomaly detection, when compared with traditional kNN-based anomaly detection algorithms, such as exact-Storm, approx-Storm, MCOD etc, while it only uses 10% of memory consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
mxxz发布了新的文献求助10
2秒前
愉快夕阳完成签到,获得积分10
4秒前
Orange应助三木采纳,获得10
4秒前
123完成签到,获得积分10
5秒前
ME3完成签到,获得积分10
5秒前
共享精神应助tytyty采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
aka2012发布了新的文献求助30
7秒前
7秒前
7秒前
WendyWen发布了新的文献求助200
8秒前
8秒前
TongMan完成签到,获得积分20
8秒前
华仔应助谢谢sang采纳,获得10
8秒前
小衰帅完成签到,获得积分10
8秒前
gyx发布了新的文献求助10
9秒前
科研通AI2S应助开放的大侠采纳,获得10
9秒前
小二郎应助freebird采纳,获得30
9秒前
20231125完成签到,获得积分10
10秒前
四憙发布了新的文献求助10
10秒前
星星完成签到,获得积分10
10秒前
小崽总完成签到,获得积分10
11秒前
是微微发布了新的文献求助10
11秒前
Joy发布了新的文献求助10
11秒前
kx发布了新的文献求助10
12秒前
桃桃奶盖发布了新的文献求助10
12秒前
化鼠发布了新的文献求助10
12秒前
12秒前
蘸水发布了新的文献求助10
12秒前
洞两发布了新的文献求助10
13秒前
科研通AI5应助坦率的果汁采纳,获得10
13秒前
TongMan发布了新的文献求助10
13秒前
xol完成签到 ,获得积分10
13秒前
星星发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199