Community structure follows simple assembly rules in microbial microcosms

成对比较 微观世界 群落结构 简单(哲学) 竞赛(生物学) 预测能力 生态学 微生物种群生物学 生物 计算机科学 细菌 社区 生态系统 人工智能 遗传学 认识论 哲学
作者
Jonathan Friedman,Logan M. Higgins,Jeff Gore
出处
期刊:Nature Ecology and Evolution [Springer Nature]
卷期号:1 (5): 109-109 被引量:550
标识
DOI:10.1038/s41559-017-0109
摘要

Microorganisms typically form diverse communities of interacting species, whose activities have tremendous impact on the plants, animals and humans they associate with. The ability to predict the structure of these complex communities is crucial to understanding and managing them. Here, we propose a simple, qualitative assembly rule that predicts community structure from the outcomes of competitions between small sets of species, and experimentally assess its predictive power using synthetic microbial communities composed of up to eight soil bacterial species. Nearly all competitions resulted in a unique, stable community, whose composition was independent of the initial species fractions. Survival in three-species competitions was predicted by the pairwise outcomes with an accuracy of ~90%. Obtaining a similar level of accuracy in competitions between sets of seven or all eight species required incorporating additional information regarding the outcomes of the three-species competitions. Our results demonstrate experimentally the ability of a simple bottom-up approach to predict community structure. Such an approach is key for anticipating the response of communities to changing environments, designing interventions to steer existing communities to more desirable states and, ultimately, rationally designing communities de novo. Survival of competing microbial species pairs predicts competition outcome between a greater number of species: species that coexist with each other in pairs will survive, species that are excluded by any of the surviving species will go extinct.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxy完成签到,获得积分10
刚刚
青葙完成签到,获得积分10
刚刚
刚刚
虚幻山晴发布了新的文献求助10
刚刚
欣怡高完成签到,获得积分20
1秒前
2秒前
奚娜发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
隐形曼青应助1234采纳,获得10
2秒前
科研通AI6应助mochou采纳,获得10
3秒前
3秒前
杨金城发布了新的文献求助10
3秒前
4秒前
眠羊发布了新的文献求助10
4秒前
4秒前
曾健完成签到,获得积分10
5秒前
亭2007发布了新的文献求助10
5秒前
Sience发布了新的文献求助10
6秒前
Limerence完成签到,获得积分10
6秒前
cipisa发布了新的文献求助10
7秒前
科研通AI6应助不吃鱼的猫采纳,获得10
7秒前
7秒前
海星完成签到,获得积分10
7秒前
FashionBoy应助Zzzzz采纳,获得10
7秒前
zzz完成签到,获得积分10
7秒前
7秒前
自知则知之完成签到,获得积分10
8秒前
8秒前
汉堡包应助非凡采纳,获得10
9秒前
MINGKKK发布了新的文献求助10
9秒前
嘿嘿嘿嘿发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
自信之卉完成签到,获得积分10
12秒前
12秒前
Orange应助chenchunlan96采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624927
求助须知:如何正确求助?哪些是违规求助? 4710799
关于积分的说明 14952231
捐赠科研通 4778856
什么是DOI,文献DOI怎么找? 2553454
邀请新用户注册赠送积分活动 1515421
关于科研通互助平台的介绍 1475721