Community structure follows simple assembly rules in microbial microcosms

成对比较 微观世界 群落结构 简单(哲学) 竞赛(生物学) 预测能力 生态学 微生物种群生物学 生物 计算机科学 细菌 社区 生态系统 人工智能 遗传学 认识论 哲学
作者
Jonathan Friedman,Logan M. Higgins,Jeff Gore
出处
期刊:Nature Ecology and Evolution [Nature Portfolio]
卷期号:1 (5) 被引量:512
标识
DOI:10.1038/s41559-017-0109
摘要

Microorganisms typically form diverse communities of interacting species, whose activities have tremendous impact on the plants, animals and humans they associate with. The ability to predict the structure of these complex communities is crucial to understanding and managing them. Here, we propose a simple, qualitative assembly rule that predicts community structure from the outcomes of competitions between small sets of species, and experimentally assess its predictive power using synthetic microbial communities composed of up to eight soil bacterial species. Nearly all competitions resulted in a unique, stable community, whose composition was independent of the initial species fractions. Survival in three-species competitions was predicted by the pairwise outcomes with an accuracy of ~90%. Obtaining a similar level of accuracy in competitions between sets of seven or all eight species required incorporating additional information regarding the outcomes of the three-species competitions. Our results demonstrate experimentally the ability of a simple bottom-up approach to predict community structure. Such an approach is key for anticipating the response of communities to changing environments, designing interventions to steer existing communities to more desirable states and, ultimately, rationally designing communities de novo. Survival of competing microbial species pairs predicts competition outcome between a greater number of species: species that coexist with each other in pairs will survive, species that are excluded by any of the surviving species will go extinct.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助11122采纳,获得10
刚刚
kkscanl完成签到 ,获得积分10
2秒前
2秒前
2秒前
复杂晓灵完成签到,获得积分10
3秒前
5秒前
GY发布了新的文献求助10
6秒前
6秒前
7秒前
wnx发布了新的文献求助10
7秒前
8秒前
魏某某发布了新的文献求助10
8秒前
10秒前
11秒前
复杂晓灵发布了新的文献求助10
11秒前
11秒前
zho发布了新的文献求助30
12秒前
鳗鱼不弱发布了新的文献求助10
13秒前
科研通AI2S应助liu15136110637采纳,获得10
13秒前
打打应助GY采纳,获得10
13秒前
秋辞完成签到,获得积分10
15秒前
Hello应助富贵采纳,获得10
19秒前
不三不四完成签到,获得积分10
21秒前
24秒前
劲秉应助现代的天蓝采纳,获得24
28秒前
小二郎应助YYY666采纳,获得10
28秒前
科研通AI5应助wjl采纳,获得10
29秒前
29秒前
1111完成签到 ,获得积分10
30秒前
王小黑完成签到,获得积分10
33秒前
科研通AI5应助Jasmine采纳,获得10
35秒前
35秒前
NexusExplorer应助dyce采纳,获得10
35秒前
思源应助酸菜采纳,获得10
37秒前
酷波er应助vg采纳,获得10
37秒前
852应助小慧采纳,获得10
38秒前
左丘白桃应助科研通管家采纳,获得10
40秒前
李健应助科研通管家采纳,获得10
40秒前
星辰大海应助科研通管家采纳,获得10
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3676650
求助须知:如何正确求助?哪些是违规求助? 3230784
关于积分的说明 9792536
捐赠科研通 2941894
什么是DOI,文献DOI怎么找? 1612894
邀请新用户注册赠送积分活动 761348
科研通“疑难数据库(出版商)”最低求助积分说明 736813