Community structure follows simple assembly rules in microbial microcosms

成对比较 微观世界 群落结构 简单(哲学) 竞赛(生物学) 预测能力 生态学 微生物种群生物学 生物 计算机科学 细菌 社区 生态系统 人工智能 遗传学 认识论 哲学
作者
Jonathan Friedman,Logan M. Higgins,Jeff Gore
出处
期刊:Nature Ecology and Evolution [Springer Nature]
卷期号:1 (5): 109-109 被引量:550
标识
DOI:10.1038/s41559-017-0109
摘要

Microorganisms typically form diverse communities of interacting species, whose activities have tremendous impact on the plants, animals and humans they associate with. The ability to predict the structure of these complex communities is crucial to understanding and managing them. Here, we propose a simple, qualitative assembly rule that predicts community structure from the outcomes of competitions between small sets of species, and experimentally assess its predictive power using synthetic microbial communities composed of up to eight soil bacterial species. Nearly all competitions resulted in a unique, stable community, whose composition was independent of the initial species fractions. Survival in three-species competitions was predicted by the pairwise outcomes with an accuracy of ~90%. Obtaining a similar level of accuracy in competitions between sets of seven or all eight species required incorporating additional information regarding the outcomes of the three-species competitions. Our results demonstrate experimentally the ability of a simple bottom-up approach to predict community structure. Such an approach is key for anticipating the response of communities to changing environments, designing interventions to steer existing communities to more desirable states and, ultimately, rationally designing communities de novo. Survival of competing microbial species pairs predicts competition outcome between a greater number of species: species that coexist with each other in pairs will survive, species that are excluded by any of the surviving species will go extinct.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
大模型应助Kannan采纳,获得10
4秒前
5秒前
5秒前
7秒前
追风hyzhang完成签到,获得积分10
7秒前
7秒前
q_q_l发布了新的文献求助10
8秒前
wxz发布了新的文献求助10
9秒前
luoluo发布了新的文献求助10
9秒前
这就去学习完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
落后成仁完成签到,获得积分20
10秒前
小鬼完成签到,获得积分10
11秒前
XEN发布了新的文献求助10
11秒前
眼睛完成签到,获得积分10
11秒前
吴玉杰完成签到,获得积分10
11秒前
歇儿哒哒完成签到,获得积分10
11秒前
12秒前
xiaoxin完成签到,获得积分20
13秒前
13秒前
温婉的凝雁完成签到,获得积分20
14秒前
14秒前
xiaoxin发布了新的文献求助10
15秒前
Owen应助q_q_l采纳,获得10
16秒前
16秒前
领导范儿应助舒适的紫丝采纳,获得10
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
科目三应助wxz采纳,获得10
18秒前
kaka0934完成签到,获得积分10
18秒前
20秒前
lkx完成签到,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778422
求助须知:如何正确求助?哪些是违规求助? 5641193
关于积分的说明 15449238
捐赠科研通 4910131
什么是DOI,文献DOI怎么找? 2642318
邀请新用户注册赠送积分活动 1590208
关于科研通互助平台的介绍 1544554