光热治疗
光动力疗法
材料科学
激光器
光敏剂
辐照
体内
生物医学中的光声成像
纳米技术
生物医学工程
光电子学
光学
光化学
医学
化学
生物
生物技术
有机化学
物理
核物理学
作者
Shan Sun,Jingqin Chen,Kai Jiang,Zhongdi Tang,Yuhui Wang,Zhongjun Li,Chengbo Liu,Aiguo Wu,Hengwei Lin
标识
DOI:10.1021/acsami.8b19042
摘要
Photomediated cancer therapy, mainly including photothermal (PT) therapy (PTT) and photodynamic therapy (PDT), has attracted tremendous attention in recent years thanks to its noninvasive and stimuli-responsive features. The single mode of PTT or PDT, however, has obvious drawbacks, either requiring high-power laser irradiation to generate enough heat or only providing limited efficacy due to the hypoxia nature inside tumors. In addition, the reported synergistic PTT/PDT generally utilized two excitation sources to separately activate PTT and PDT, and the problem of high-power laser irradiation for PTT was still not well solved. Herein, a new concept, loading a small amount of photosensitizers onto a PTT agent (both of them can be triggered by a single-near-infrared (NIR) laser), was proposed to evade the shortcomings of PTT and PDT. To validate this idea, minute quantities of photosensitizer chlorin e6 (Ce6) (0.56% of mass) were anchored onto amino-rich red emissive carbon dots (RCDs) that possess superior photothermal (PT) character under 671 nm NIR laser (PT conversion efficiency to be 46%), and meanwhile the PDT of Ce6 can be activated by this laser irradiation as well. The findings demonstrate that Ce6-modified RCDs (named Ce6-RCDs) offer much higher cancer therapy efficacy under a reduced laser power density (i.e., 0.50 W cm-2 at 671 nm) in vitro and in vivo than the equivalent RCDs or Ce6 under the same irradiation conditions. Besides, the Ce6-RCDs also exhibit multimodal imaging capabilities (i.e., fluorescence (FL), photoacoustic (PA), and PT), which can be employed for guidance of the phototherapy process. This study suggests not only a strategy to enhance cancer phototherapy efficacy but also a promising candidate (i.e., Ce6-RCDs) for multimodal FL/PA/PT imaging-guided and single-NIR-laser-triggered synergistic PTT/PDT for cancers by a reduced irradiation power.
科研通智能强力驱动
Strongly Powered by AbleSci AI