克里金
数学优化
水准点(测量)
计算机科学
元建模
集合(抽象数据类型)
多目标优化
背景(考古学)
帕累托原理
排名(信息检索)
帕累托最优
噪音(视频)
算法
数学
机器学习
人工智能
图像(数学)
古生物学
生物
程序设计语言
地理
大地测量学
作者
Sebastian Rojas Gonzalez,Hamed Jalali,Inneke Van Nieuwenhuyse
出处
期刊:Winter Simulation Conference
日期:2018-12-09
卷期号:: 2155-2166
被引量:5
标识
DOI:10.5555/3320516.3320775
摘要
We consider the multiobjective simulation optimization problem, where we seek to find the non-dominated set of designs evaluated using noisy simulation evaluations, in the context of numerically expensive simulators. We propose a metamodel-based scalarization approach built upon the famous ParEGO algorithm. Our approach mainly differentiates from ParEGO and similar algorithms in that we use stochastic kriging, which explicitly characterizes both the extrinsic uncertainty of the unknown response surface, and the intrinsic uncertainty inherent in a stochastic simulation. We additionally integrate the Multiobjective Optimal Computing Budget Allocation ranking and selection procedure in view of maximizing the probability of selecting systems with the true best expected performance. We evaluate the performance of the algorithm using standard benchmark test functions for multiobjective optimizers, perturbed by heterogeneous noise. The experimental results show that the proposed method outperforms its deterministic counterpart based on well-known quality indicators and the fraction of the true Pareto set found.
科研通智能强力驱动
Strongly Powered by AbleSci AI