Computer aided lung cancer diagnosis with deep learning algorithms

人工智能 深度学习 计算机科学 卷积神经网络 深信不疑网络 计算机辅助诊断 自编码 模式识别(心理学) 医学影像学 算法 机器学习
作者
Wenqing Sun,Bin Zheng,Wei Qian
出处
期刊:Proceedings of SPIE 被引量:232
标识
DOI:10.1117/12.2216307
摘要

Deep learning is considered as a popular and powerful method in pattern recognition and classification. However, there are not many deep structured applications used in medical imaging diagnosis area, because large dataset is not always available for medical images. In this study we tested the feasibility of using deep learning algorithms for lung cancer diagnosis with the cases from Lung Image Database Consortium (LIDC) database. The nodules on each computed tomography (CT) slice were segmented according to marks provided by the radiologists. After down sampling and rotating we acquired 174412 samples with 52 by 52 pixel each and the corresponding truth files. Three deep learning algorithms were designed and implemented, including Convolutional Neural Network (CNN), Deep Belief Networks (DBNs), Stacked Denoising Autoencoder (SDAE). To compare the performance of deep learning algorithms with traditional computer aided diagnosis (CADx) system, we designed a scheme with 28 image features and support vector machine. The accuracies of CNN, DBNs, and SDAE are 0.7976, 0.8119, and 0.7929, respectively; the accuracy of our designed traditional CADx is 0.7940, which is slightly lower than CNN and DBNs. We also noticed that the mislabeled nodules using DBNs are 4% larger than using traditional CADx, this might be resulting from down sampling process lost some size information of the nodules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心系天下发布了新的文献求助10
1秒前
坚强水香完成签到 ,获得积分10
1秒前
大猫不吃鱼完成签到 ,获得积分10
2秒前
3秒前
11发布了新的文献求助10
3秒前
1122完成签到,获得积分10
4秒前
充电宝应助海上聆风采纳,获得10
4秒前
6秒前
在水一方应助奇迹行者采纳,获得10
7秒前
冷静冷风完成签到 ,获得积分10
7秒前
Doctor_jie完成签到 ,获得积分10
8秒前
阔达的扬完成签到,获得积分10
8秒前
乔磊完成签到,获得积分10
8秒前
yz完成签到,获得积分10
9秒前
9秒前
10秒前
承乐应助Ashley采纳,获得10
11秒前
11秒前
烂漫的涫完成签到 ,获得积分10
12秒前
科研通AI6应助欢喜的梦旋采纳,获得10
12秒前
11完成签到,获得积分20
12秒前
NexusExplorer应助Snoopy采纳,获得10
13秒前
赘婿应助北海西贝采纳,获得10
14秒前
1122发布了新的文献求助10
14秒前
雪白元龙完成签到,获得积分10
14秒前
15秒前
15秒前
Dahlia完成签到,获得积分10
16秒前
wellscurry完成签到,获得积分10
16秒前
17秒前
梦XING发布了新的文献求助10
18秒前
Sigar完成签到 ,获得积分10
19秒前
情怀应助llya采纳,获得10
19秒前
22秒前
22秒前
悦耳的柠檬完成签到,获得积分10
22秒前
WEI发布了新的文献求助10
22秒前
22秒前
22秒前
清脆如娆完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603755
求助须知:如何正确求助?哪些是违规求助? 4688731
关于积分的说明 14855695
捐赠科研通 4694961
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814