Computer aided lung cancer diagnosis with deep learning algorithms

人工智能 深度学习 计算机科学 卷积神经网络 深信不疑网络 计算机辅助诊断 自编码 模式识别(心理学) 医学影像学 算法 机器学习
作者
Wenqing Sun,Bin Zheng,Wei Qian
出处
期刊:Proceedings of SPIE 被引量:232
标识
DOI:10.1117/12.2216307
摘要

Deep learning is considered as a popular and powerful method in pattern recognition and classification. However, there are not many deep structured applications used in medical imaging diagnosis area, because large dataset is not always available for medical images. In this study we tested the feasibility of using deep learning algorithms for lung cancer diagnosis with the cases from Lung Image Database Consortium (LIDC) database. The nodules on each computed tomography (CT) slice were segmented according to marks provided by the radiologists. After down sampling and rotating we acquired 174412 samples with 52 by 52 pixel each and the corresponding truth files. Three deep learning algorithms were designed and implemented, including Convolutional Neural Network (CNN), Deep Belief Networks (DBNs), Stacked Denoising Autoencoder (SDAE). To compare the performance of deep learning algorithms with traditional computer aided diagnosis (CADx) system, we designed a scheme with 28 image features and support vector machine. The accuracies of CNN, DBNs, and SDAE are 0.7976, 0.8119, and 0.7929, respectively; the accuracy of our designed traditional CADx is 0.7940, which is slightly lower than CNN and DBNs. We also noticed that the mislabeled nodules using DBNs are 4% larger than using traditional CADx, this might be resulting from down sampling process lost some size information of the nodules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
rxyxiaoyu完成签到,获得积分10
1秒前
2秒前
万能图书馆应助普鲁卡因采纳,获得10
2秒前
不败姑娘完成签到 ,获得积分10
2秒前
3秒前
明理雨莲完成签到,获得积分10
3秒前
危机的桐完成签到,获得积分10
3秒前
3秒前
个性的夜白完成签到,获得积分10
3秒前
Ryubot完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助20
4秒前
丘比特应助哈哈和采纳,获得10
5秒前
5秒前
6秒前
6秒前
憨憨发布了新的文献求助10
6秒前
xuan完成签到,获得积分10
6秒前
隐形曼青应助邢夏之采纳,获得10
6秒前
wangxr完成签到,获得积分10
7秒前
7秒前
Mic应助Wayne采纳,获得10
7秒前
Ryubot发布了新的文献求助10
7秒前
8秒前
xupt唐僧发布了新的文献求助10
8秒前
jj完成签到,获得积分10
8秒前
努力的欢欢完成签到,获得积分10
8秒前
AshleyD完成签到,获得积分10
8秒前
9秒前
斜阳完成签到 ,获得积分10
9秒前
风趣过客发布了新的文献求助20
10秒前
leo_zjm完成签到,获得积分10
10秒前
mTOR完成签到,获得积分10
10秒前
wangdongjiao发布了新的文献求助10
10秒前
yyy完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
kk完成签到,获得积分10
12秒前
研友_8RlQ2n完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034