Computer aided lung cancer diagnosis with deep learning algorithms

人工智能 深度学习 计算机科学 卷积神经网络 深信不疑网络 计算机辅助诊断 自编码 模式识别(心理学) 医学影像学 算法 机器学习
作者
Wenqing Sun,Bin Zheng,Wei Qian
出处
期刊:Proceedings of SPIE 被引量:232
标识
DOI:10.1117/12.2216307
摘要

Deep learning is considered as a popular and powerful method in pattern recognition and classification. However, there are not many deep structured applications used in medical imaging diagnosis area, because large dataset is not always available for medical images. In this study we tested the feasibility of using deep learning algorithms for lung cancer diagnosis with the cases from Lung Image Database Consortium (LIDC) database. The nodules on each computed tomography (CT) slice were segmented according to marks provided by the radiologists. After down sampling and rotating we acquired 174412 samples with 52 by 52 pixel each and the corresponding truth files. Three deep learning algorithms were designed and implemented, including Convolutional Neural Network (CNN), Deep Belief Networks (DBNs), Stacked Denoising Autoencoder (SDAE). To compare the performance of deep learning algorithms with traditional computer aided diagnosis (CADx) system, we designed a scheme with 28 image features and support vector machine. The accuracies of CNN, DBNs, and SDAE are 0.7976, 0.8119, and 0.7929, respectively; the accuracy of our designed traditional CADx is 0.7940, which is slightly lower than CNN and DBNs. We also noticed that the mislabeled nodules using DBNs are 4% larger than using traditional CADx, this might be resulting from down sampling process lost some size information of the nodules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助Pierce采纳,获得10
刚刚
bbhk完成签到,获得积分10
1秒前
wwqc完成签到,获得积分0
1秒前
Ting发布了新的文献求助20
2秒前
耳火发布了新的文献求助10
2秒前
月月完成签到,获得积分10
2秒前
chen关注了科研通微信公众号
2秒前
3秒前
琳666发布了新的文献求助30
3秒前
3秒前
朱祥龙发布了新的文献求助30
4秒前
5秒前
5秒前
6秒前
wml应助Li采纳,获得10
6秒前
夏晴晴完成签到,获得积分10
7秒前
7秒前
8秒前
受伤尔曼完成签到,获得积分10
8秒前
Pierce完成签到,获得积分10
8秒前
Yu发布了新的文献求助10
9秒前
耳火完成签到,获得积分10
9秒前
zhaosibo020118完成签到,获得积分10
9秒前
CC完成签到,获得积分10
9秒前
10秒前
10秒前
Lucas应助科研通管家采纳,获得30
10秒前
浮游应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
求助人员应助科研通管家采纳,获得10
10秒前
文静香薇完成签到 ,获得积分20
10秒前
3333r应助科研通管家采纳,获得10
10秒前
10秒前
AAA应助科研通管家采纳,获得10
10秒前
spc68应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
11秒前
云溪应助科研通管家采纳,获得20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573