Computer aided lung cancer diagnosis with deep learning algorithms

人工智能 深度学习 计算机科学 卷积神经网络 深信不疑网络 计算机辅助诊断 自编码 模式识别(心理学) 医学影像学 算法 机器学习
作者
Wenqing Sun,Bin Zheng,Wei Qian
出处
期刊:Proceedings of SPIE 被引量:232
标识
DOI:10.1117/12.2216307
摘要

Deep learning is considered as a popular and powerful method in pattern recognition and classification. However, there are not many deep structured applications used in medical imaging diagnosis area, because large dataset is not always available for medical images. In this study we tested the feasibility of using deep learning algorithms for lung cancer diagnosis with the cases from Lung Image Database Consortium (LIDC) database. The nodules on each computed tomography (CT) slice were segmented according to marks provided by the radiologists. After down sampling and rotating we acquired 174412 samples with 52 by 52 pixel each and the corresponding truth files. Three deep learning algorithms were designed and implemented, including Convolutional Neural Network (CNN), Deep Belief Networks (DBNs), Stacked Denoising Autoencoder (SDAE). To compare the performance of deep learning algorithms with traditional computer aided diagnosis (CADx) system, we designed a scheme with 28 image features and support vector machine. The accuracies of CNN, DBNs, and SDAE are 0.7976, 0.8119, and 0.7929, respectively; the accuracy of our designed traditional CADx is 0.7940, which is slightly lower than CNN and DBNs. We also noticed that the mislabeled nodules using DBNs are 4% larger than using traditional CADx, this might be resulting from down sampling process lost some size information of the nodules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kevin1018发布了新的文献求助10
3秒前
4秒前
充电宝应助小康采纳,获得10
4秒前
川baba完成签到,获得积分10
4秒前
zyy144728发布了新的文献求助10
4秒前
liu完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
gexzygg应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
11秒前
希望天下0贩的0应助yyx采纳,获得10
11秒前
11秒前
wxy完成签到 ,获得积分10
12秒前
李佳旭发布了新的文献求助30
15秒前
英雷完成签到,获得积分10
18秒前
ewind完成签到 ,获得积分10
19秒前
19秒前
20秒前
李爱国应助小康采纳,获得10
21秒前
Stella应助欧欧拉格朗日采纳,获得10
24秒前
weijinfen发布了新的文献求助30
24秒前
科研通AI2S应助含蓄丸子采纳,获得10
25秒前
默默的棒棒糖完成签到 ,获得积分10
25秒前
Enheng完成签到,获得积分10
25秒前
ding应助无情访琴采纳,获得10
29秒前
rebubu完成签到 ,获得积分10
29秒前
Jere发布了新的文献求助20
30秒前
今后应助无情访琴采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668834
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514585
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523