清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Computer aided lung cancer diagnosis with deep learning algorithms

人工智能 深度学习 计算机科学 卷积神经网络 深信不疑网络 计算机辅助诊断 自编码 模式识别(心理学) 医学影像学 算法 机器学习
作者
Wenqing Sun,Bin Zheng,Wei Qian
出处
期刊:Proceedings of SPIE 被引量:232
标识
DOI:10.1117/12.2216307
摘要

Deep learning is considered as a popular and powerful method in pattern recognition and classification. However, there are not many deep structured applications used in medical imaging diagnosis area, because large dataset is not always available for medical images. In this study we tested the feasibility of using deep learning algorithms for lung cancer diagnosis with the cases from Lung Image Database Consortium (LIDC) database. The nodules on each computed tomography (CT) slice were segmented according to marks provided by the radiologists. After down sampling and rotating we acquired 174412 samples with 52 by 52 pixel each and the corresponding truth files. Three deep learning algorithms were designed and implemented, including Convolutional Neural Network (CNN), Deep Belief Networks (DBNs), Stacked Denoising Autoencoder (SDAE). To compare the performance of deep learning algorithms with traditional computer aided diagnosis (CADx) system, we designed a scheme with 28 image features and support vector machine. The accuracies of CNN, DBNs, and SDAE are 0.7976, 0.8119, and 0.7929, respectively; the accuracy of our designed traditional CADx is 0.7940, which is slightly lower than CNN and DBNs. We also noticed that the mislabeled nodules using DBNs are 4% larger than using traditional CADx, this might be resulting from down sampling process lost some size information of the nodules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色的芷容完成签到 ,获得积分10
4秒前
xiaobai123456完成签到,获得积分10
12秒前
简单的冬瓜完成签到,获得积分10
12秒前
酷波er应助Dongjie采纳,获得10
14秒前
24秒前
Luke发布了新的文献求助10
29秒前
34秒前
邱佩群完成签到 ,获得积分10
47秒前
小蘑菇应助Luke采纳,获得10
50秒前
练得身形似鹤形完成签到 ,获得积分10
54秒前
59秒前
卜哥完成签到,获得积分10
59秒前
guoguo1119完成签到 ,获得积分10
1分钟前
moxiang发布了新的文献求助10
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
Chelsea完成签到,获得积分10
1分钟前
1分钟前
英姑应助moxiang采纳,获得10
1分钟前
1分钟前
Mia233完成签到 ,获得积分10
1分钟前
Dongjie发布了新的文献求助10
1分钟前
Luke发布了新的文献求助10
1分钟前
喵了个咪完成签到 ,获得积分10
1分钟前
小二郎应助Luke采纳,获得10
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
1分钟前
Luke发布了新的文献求助10
1分钟前
小糊涂完成签到 ,获得积分10
2分钟前
dx完成签到,获得积分10
2分钟前
debu9完成签到,获得积分10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
锅架了完成签到 ,获得积分10
2分钟前
雪酪芋泥球完成签到 ,获得积分10
2分钟前
甜乎贝贝完成签到 ,获得积分0
2分钟前
BINBIN完成签到 ,获得积分10
3分钟前
要减肥的土豆完成签到,获得积分10
3分钟前
3分钟前
lingling完成签到 ,获得积分10
3分钟前
俞若枫发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645003
求助须知:如何正确求助?哪些是违规求助? 4767024
关于积分的说明 15026102
捐赠科研通 4803370
什么是DOI,文献DOI怎么找? 2568275
邀请新用户注册赠送积分活动 1525669
关于科研通互助平台的介绍 1485222