计算机科学
杠杆(统计)
一套
人工智能
水准点(测量)
背景(考古学)
比例(比率)
集合(抽象数据类型)
像素
机器学习
计算机视觉
地图学
地理
考古
程序设计语言
作者
Marius Cordts,Mahamed G. H. Omran,Sebastian Ramos,Timo Rehfeld,Markus Enzweiler,Rodrigo Benenson,Uwe Franke,Stefan Roth,Bernt Schiele
标识
DOI:10.1109/cvpr.2016.350
摘要
Visual understanding of complex urban street scenes is an enabling factor for a wide range of applications. Object detection has benefited enormously from large-scale datasets, especially in the context of deep learning. For semantic urban scene understanding, however, no current dataset adequately captures the complexity of real-world urban scenes. To address this, we introduce Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling. Cityscapes is comprised of a large, diverse set of stereo video sequences recorded in streets from 50 different cities. 5000 of these images have high quality pixel-level annotations, 20 000 additional images have coarse annotations to enable methods that leverage large volumes of weakly-labeled data. Crucially, our effort exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity. Our accompanying empirical study provides an in-depth analysis of the dataset characteristics, as well as a performance evaluation of several state-of-the-art approaches based on our benchmark.
科研通智能强力驱动
Strongly Powered by AbleSci AI