A weighted polynomial based material decomposition method for spectral x-ray CT imaging

加权 多项式的 分解 光子计数 能量(信号处理) 探测器 算法 噪音(视频) 数学 基础(线性代数) 迭代法 分解法(排队论) 计算机科学 光学 物理 数学分析 人工智能 声学 几何学 统计 图像(数学) 生物 生态学
作者
Dufan Wu,Li Zhang,Xiaohua Zhu,Xiaofei Xu,Sen Wang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:61 (10): 3749-3783 被引量:33
标识
DOI:10.1088/0031-9155/61/10/3749
摘要

Currently in photon counting based spectral x-ray computed tomography (CT) imaging, pre-reconstruction basis materials decomposition is an effective way to reconstruct densities of various materials. The iterative maximum-likelihood method requires precise spectrum information and is time-costly. In this paper, a novel non-iterative decomposition method based on polynomials is proposed for spectral CT, whose aim was to optimize the noise performance when there is more energy bins than the number of basis materials. Several subsets were taken from all the energy bins and conventional polynomials were established for each of them. The decomposition results from each polynomial were summed with pre-calculated weighting factors, which were designed to minimize the overall noises. Numerical studies showed that the decomposition noise of the proposed method was close to the Cramer–Rao lower bound under Poisson noises. Furthermore, experiments were carried out with an XCounter Filte X1 photon counting detector for two-material decomposition and three-material decomposition for validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jianmin完成签到,获得积分10
刚刚
tangz发布了新的文献求助10
1秒前
2秒前
2秒前
在水一方应助宥啊采纳,获得10
2秒前
jianmin发布了新的文献求助10
2秒前
4秒前
4秒前
多肉丸子完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
思源应助hqq采纳,获得10
5秒前
聪慧芷巧发布了新的文献求助10
6秒前
李小燕发布了新的文献求助10
6秒前
zhang发布了新的文献求助10
8秒前
8秒前
努力科研的博士僧完成签到,获得积分10
8秒前
zhuzhen007发布了新的文献求助10
10秒前
甜栗栗子完成签到 ,获得积分10
11秒前
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
脑洞疼应助果实采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
yar应助科研通管家采纳,获得10
12秒前
12秒前
大个应助科研通管家采纳,获得10
13秒前
anitachiu1104发布了新的文献求助10
13秒前
打打应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
情怀应助不咸采纳,获得10
14秒前
缓慢海亦发布了新的文献求助10
15秒前
16秒前
能干的丸子完成签到,获得积分10
17秒前
宥啊发布了新的文献求助10
19秒前
my完成签到,获得积分10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150