Efforts on High-Frequency Pulse Detonation Engines

起爆 航空航天工程 材料科学 脉搏(音乐) 爆燃转爆轰 冲压发动机 声学 爆炸物 工程类 物理 燃烧 燃烧室 电气工程 探测器 有机化学 化学
作者
Ke Wang,Wei Fan
出处
期刊:Journal of Propulsion and Power [American Institute of Aeronautics and Astronautics]
卷期号:33 (1): 17-28 被引量:17
标识
DOI:10.2514/1.b36029
摘要

No AccessPressure Gain CombustionEfforts on High-Frequency Pulse Detonation EnginesKe Wang and Wei FanKe WangNorthwestern Polytechnical University, 710072 Xi’an, People’s Republic of China*Associate Professor, School of Power and Energy; .Search for more papers by this author and Wei FanNorthwestern Polytechnical University, 710072 Xi’an, People’s Republic of China†Professor, School of Power and Energy; .Search for more papers by this authorPublished Online:31 May 2016https://doi.org/10.2514/1.B36029SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail AboutAbstract References [1] Kailasanath K., “Recent Developments in the Research on Pulse Detonation Engines,” AIAA Journal, Vol. 41, No. 2, 2003, pp. 145–159. doi:https://doi.org/10.2514/2.1933 AIAJAH 0001-1452 LinkGoogle Scholar[2] Kailasanath K., “Review of Propulsion Applications of Detonation Waves,” AIAA Journal, Vol. 38, No. 9, 2000, pp. 1698–1708. doi:https://doi.org/10.2514/2.1156 AIAJAH 0001-1452 LinkGoogle Scholar[3] Powers J. M. and Frolov S. M., “Introduction: Perspectives on Detonation-Based Propulsion,” Journal of Propulsion and Power, Vol. 22, No. 6, 2006, pp. 1153–1154. doi:https://doi.org/10.2514/1.26953 JPPOEL 0748-4658 LinkGoogle Scholar[4] Panicker P. K., Li J. M., Lu F. K. and Wilson D. R., “Application of Pulsed Detonation Engine for Electric Power Generation,” AIAA Paper 2007-1246, 2007. LinkGoogle Scholar[5] Sakurai T. and Yuasa S., “Development of a Hydrogen-Fueled Pulse Detonation Combustor for 1 kW-Class Micro Gas Turbine,” AIAA Paper 2010-6881, 2010. LinkGoogle Scholar[6] Endo T., “Thermal Spray of Alumina by High-Frequency Pulsed Detonations,” 2015 International Workshop on Detonation for Propulsion, Jianping Wang, Peking Univ., China, Aug. 2015. Google Scholar[7] Endo T., “Thermal Spray by Pulsed Detonations,” 2013 International Workshop on Detonation for Propulsion, Air Force Research Lab., Wright–Patterson AFB, OH, July 2013. Google Scholar[8] Nettleton M. A., “Recent Work on Gaseous Detonations,” Shock Waves, Vol. 12, No. 1, 2002, pp. 3–12. doi:https://doi.org/10.1007/s001930200134 SHWAEN 0938-1287 CrossrefGoogle Scholar[9] Roy G. D., Frolov S. M., Borisov A. A. and Netzer D. W., “Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective,” Progress in Energy and Combustion Science, Vol. 30, No. 6, 2004, pp. 545–672. doi:https://doi.org/10.1016/j.pecs.2004.05.001 PECSDO 0360-1285 CrossrefGoogle Scholar[10] Kailasanath K., “Liquid-Fueled Detonations in Tubes,” Journal of Propulsion and Power, Vol. 22, No. 6, 2006, pp. 1261–1268. doi:https://doi.org/10.2514/1.19624 JPPOEL 0748-4658 LinkGoogle Scholar[11] Kailasanath K., “Research on Pulse Detonation Combustion Systems—A Status Report,” AIAA Paper 2009-0631, 2009. LinkGoogle Scholar[12] Wolanski P., “Detonative Propulsion,” Proceedings of the Combustion Institute, Vol. 34, No. 1, 2013, pp. 125–158. doi:https://doi.org/10.1016/j.proci.2012.10.005 CrossrefGoogle Scholar[13] Wintenberger E., Austin J. M., Cooper M., Jackson S. and Shepherd J. E., “Analytical Model for the Impulse of Single-Cycle Pulse Detonation Tube,” Journal of Propulsion and Power, Vol. 19, No. 1, 2003, pp. 22–38. doi:https://doi.org/10.2514/2.6099 JPPOEL 0748-4658 LinkGoogle Scholar[14] Wang K., Fan W., Lu W., Zhang Q., Yan C. and Xia Q., “Propulsive Performance of a Pulse Detonation Rocket Engine Without the Purge Process,” Energy, Vol. 79, No. 1, 2015, pp. 228–234. doi:https://doi.org/10.1016/j.energy.2014.11.017 ENGYD4 0149-9386 CrossrefGoogle Scholar[15] Endo T., Yatsufusa T., Taki S., Matsuo A., Inaba K. and Kasahara J., “Homogeneous-Dilution Model of Partially Fueled Simplified Pulse Detonation Engines,” Journal of Propulsion and Power, Vol. 23, No. 5, 2007, pp. 1033–1041. doi:https://doi.org/10.2514/1.21223 JPPOEL 0748-4658 LinkGoogle Scholar[16] Kasahara J., Hirano M., Matsuo A., Daimon Y. and Endo T., “Thrust Measurement of a Multicycle Partially Filled Pulse Detonation Rocket Engine,” Journal of Propulsion and Power, Vol. 25, No. 6, 2009, pp. 1281–1290. doi:https://doi.org/10.2514/1.42224 JPPOEL 0748-4658 LinkGoogle Scholar[17] Sato S., Matsuo A., Endo T. and Kasahara J., “Numerical Studies on Specific Impulse of Partially Filled Pulse Detonation Rocket Engines,” Journal of Propulsion and Power, Vol. 22, No. 1, 2006, pp. 64–70. doi:https://doi.org/10.2514/1.9514 JPPOEL 0748-4658 LinkGoogle Scholar[18] Bello R. T. and Lu F. K., “Performance Model for Fully and Partially Filled Pulse Detonation Engine,” AIAA Paper 2015-1352, 2015. LinkGoogle Scholar[19] Zitoun R. and Desbordes D., “Propulsive Performances of Pulsed Detonations,” Combustion Science and Technology, Vol. 144, Nos. 1–6, 1999, pp. 93–114. doi:https://doi.org/10.1080/00102209908924199 CBSTB9 0010-2202 CrossrefGoogle Scholar[20] Wang K., Fan W., Lu W. and Chen F., “One Method to Increase the Operating Frequency of Pulse Detonation Rocket Engines,” Journal of Propulsion and Power, Vol. 30, No. 2, 2014, pp. 518–522. doi:https://doi.org/10.2514/1.B34880 JPPOEL 0748-4658 LinkGoogle Scholar[21] Schauer F. R., Miser C. L., Tucker K. C., Bradley R. P. and Hoke J. L., “Detonation Initiation of Hydrocarbon-Air Mixtures in a Pulsed Detonation Engine,” AIAA Paper 2005-1343, 2005. LinkGoogle Scholar[22] Li J., Chung K., Lai W. H. and Lu F. K., “Uncertainty Analysis of Deflagration-to-Detonation Run-Up Distance,” Shock Waves, Vol. 14, Nos. 5–6, 2005, pp. 413–420. doi:https://doi.org/10.1007/s00193-005-0284-3 SHWAEN 0938-1287 CrossrefGoogle Scholar[23] New T. H., Panicker P. K., Lu F. K. and Tsai H. M., “Experimental Investigations on DDT Enhancements by Shchelkin Spirals in a PDE,” AIAA Paper 2006-0552, 2006. Google Scholar[24] Kawane K., Shimada S., Kasahara J. and Matsuo A., “The Influence of Heat Transfer and Friction on the Impulse of a Detonation Tube,” Combustion and Flame, Vol. 158, No. 10, 2011, pp. 2023–2036. doi:https://doi.org/10.1016/j.combustflame.2011.02.017 CBFMAO 0010-2180 CrossrefGoogle Scholar[25] Wang K., Fan W., Zhu X. D., Jin L. and Chen F., “Experimental Studies on Rotary Valves for Single-Tube Pulse Detonation Rocket Engines,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 228, No. 2, 2014, pp. 262–270. doi:https://doi.org/10.1177/0954410012470606 CrossrefGoogle Scholar[26] Li J. L., Fan W., Yan C. J., Tu H. Y. and Xie K. C., “Performance Enhancement of a Pulse Detonation Rocket Engine,” Proceedings of the Combustion Institute, Vol. 33, No. 2, 2011, pp. 2243–2254. doi:https://doi.org/10.1016/j.proci.2010.07.048 CrossrefGoogle Scholar[27] New T. H., Panicker P. K., Chui K. F., Tsai H. M. and Lu F. K., “Experimental Study on Deflagration-to-Detonation Transition Enhancement Methods in a PDE,” AIAA Paper 2006-7958, 2006. LinkGoogle Scholar[28] Lee S. Y., Watts J., Saretto S., Pal S., Conrad C., Woodward R. and Santoro R., “Deflagration to Detonation Transition Processes by Turbulence-Generating Obstacles in Pulse Detonation Engines,” Journal of Propulsion and Power, Vol. 20, No. 6, 2004, pp. 1026–1036. doi:https://doi.org/10.2514/1.11042 JPPOEL 0748-4658 LinkGoogle Scholar[29] Fan H. Y. and Lu F. K., “Comparison of Detonation Processes in a Variable Cross Section Chamber and a Simple Tube,” Journal of Propulsion and Power, Vol. 21, No. 1, 2005, pp. 65–75. doi:https://doi.org/10.2514/1.6291 JPPOEL 0748-4658 LinkGoogle Scholar[30] Hopper D. R., King P. I. and Schauer F. R., “Propagation of Detonations Across a Step Area Change in a Pulsed Detonation Engine,” AIAA Paper 2007-0446, 2007. LinkGoogle Scholar[31] Gamezo V. N., Ogawa T. and Oran E. S., “Flame Acceleration and DDT in Channels with Obstacles: Effect of Obstacle Spacing,” Combustion and Flame, Vol. 155, Nos. 1–2, 2008, pp. 302–315. doi:https://doi.org/10.1016/j.combustflame.2008.06.004 CBFMAO 0010-2180 CrossrefGoogle Scholar[32] Brophy C. M., Dvorak W. T., Dausen D. F. and Myers C. B., “Detonation Initiation Improvements Using Swept-Ramp Obstacles,” AIAA Paper 2010-1336, 2010. LinkGoogle Scholar[33] Knox B. W., Forliti D. J., Stevens C. A., Hoke J. L. and Schauer F. R., “Unsteady Flame Speed Control and Deflagration-to-Detonation Transition Enhancement Using Fluidic Obstacles,” AIAA Paper 2010-0151, 2010. Google Scholar[34] Knox B. W., Forliti D. J., Stevens C. A., Hoke J. L. and Schauer F. R., “A Comparison of Fluidic and Physical Obstacles for Deflagration-to-Detonation Transition,” AIAA Paper 2011-0587, 2011. LinkGoogle Scholar[35] Panicker P. K., Li J. M., Lu F. K. and Wilson D. R., “Development of a Compact Liquid Fueled Pulsed Detonation Engine with Pre-Detonator,” AIAA Paper 2007-0237, 2007. Google Scholar[36] Brophy C. M., Sinibaldi J. O. and Damphousse P., “Initiator Performance for Liquid-Fueled Pulse Detonation Engines,” AIAA Paper 2002-0472, 2002. LinkGoogle Scholar[37] Mattison D. W., Brophy C. M., Sanders S. T., Ma L., Hinckley K. M., Jeffries J. B. and Hanson R. K., “Pulse Detonation Engine Characterization and Control Using Tunable Diode-Laser Sensors,” Journal of Propulsion and Power, Vol. 19, No. 4, 2003, pp. 568–572. doi:https://doi.org/10.2514/2.6167 JPPOEL 0748-4658 LinkGoogle Scholar[38] Brophy C. M., Wernert L. T. S. and Sinibaldi J. O., “Performance Characterization of a Valveless Pulse Detonation Engine,” AIAA Paper 2003-1344, 2003. LinkGoogle Scholar[39] Brophy C. M. and Hanson R. K., “Fuel Distribution Effects on Pulse Detonation Engine Operation and Performance,” Journal of Propulsion and Power, Vol. 22, No. 6, 2006, pp. 1155–1161. doi:https://doi.org/10.2514/1.18713 JPPOEL 0748-4658 LinkGoogle Scholar[40] Sinibaldi J. O., Brophy C. M., Li C. and Kailasanath K., “Initiator Detonation Diffraction Studies in Pulsed Detonation Engines,” AIAA Paper 2001-3466, 2001. Google Scholar[41] Stevens C. A., Gamezo V. N., King P. I., Schauer F. R. and Hoke J. L., “Interactions of Detonations with Ramps,” AIAA Paper 2011-0324, 2011. LinkGoogle Scholar[42] Levin V. A., Nechaev J. N. and Tarasov A. I., “A New Approach to Organizing Operation Cycles in Pulse Detonation Engines,” High-Speed Deflagration and Detonation: Fundamentals and Control, edited by Roy G. D., Frolov S. M., Netzer D. M. and Borisov A. A., ELEX-KM Publ., Moscow, 2001, pp. 223–238. Google Scholar[43] Li C. and Kailasanath K., “Detonation Initiation by Annular-Jet-Induced Imploding Shocks,” Journal of Propulsion and Power, Vol. 21, No. 1, 2005, pp. 183–186. doi:https://doi.org/10.2514/1.5463 JPPOEL 0748-4658 LinkGoogle Scholar[44] Witt B., Ciccarelli G., Zhang F. and Murray S., “Shock Reflection Detonation Initiation Studies for Pulse Detonation Engines,” Journal of Propulsion and Power, Vol. 21, No. 6, 2005, pp. 1117–1125. doi:https://doi.org/10.2514/1.14398 JPPOEL 0748-4658 LinkGoogle Scholar[45] Gelfand B. E., Khomik S. V., Bartenev A. M., Medvedev S. P., Gronig H. and Olivier H., “Detonation and Deflagration Initiation at the Focusing of Shock Waves in Combustible Gaseous Mixture,” Shock Waves, Vol. 10, No. 3, 2000, pp. 197–204. doi:https://doi.org/10.1007/s001930050007 SHWAEN 0938-1287 CrossrefGoogle Scholar[46] Li C. and Kailasanath K., “Detonation Initiation in Pulse Detonation Engines,” AIAA Paper 2003-1170, 2003. LinkGoogle Scholar[47] Jackson S. I. and Shepherd J. E., “Initiation Systems for Pulse Detonation Engines,” AIAA Paper 2002-3627, 2002. LinkGoogle Scholar[48] Jackson S. I., Grunthaner M. P. and Shepherd J. E., “Wave Implosion as an Initiation Mechanism for Pulse Detonation Engines,” AIAA Paper 2003-4820, 2003. LinkGoogle Scholar[49] Jackson S. I. and Shepherd J. E., “Detonation Initiation in a Tube via Imploding Toroidal Shock Waves,” AIAA Journal, Vol. 46, No. 9, 2008, pp. 2357–2367. doi:https://doi.org/10.2514/1.35569 AIAJAH 0001-1452 LinkGoogle Scholar[50] Rolling A. J., King P. I. and Schauer F. R., “Propagation of Detonation Waves in Tubes Split from a PDE Thrust Tube,” AIAA Paper 2002-3714, 2002. LinkGoogle Scholar[51] Panzenhagen K. L., King P. I., Tucker K. C. and Schauer F. R., “Liquid Hydrocarbon Detonation Branching in a Pulse Detonation Engine,” AIAA Paper 2004-3401, 2004. LinkGoogle Scholar[52] Hausman A. R., King P. I., Hopper D. R., Hoke J. L. and Schauer F. R., “Direct Initiation by Detonation Branching in a Pulsed Detonation Engine,” AIAA Paper 2008-0108, 2008. LinkGoogle Scholar[53] Hopper D. R., King P. I., Hoke J. L. and Schauer F. R., “Development of a Continuous Branching Pulsed Detonation Engine,” AIAA Paper 2008-0112, 2008. LinkGoogle Scholar[54] Camardo L. A., King P. I., Stevens C., Schauer F. R. and Hoke J. L., “Determination of Effective Crossover Location and Dimensions for Branched Detonation in a Pulsed Detonation Engine,” AIAA Paper 2012-0122, 2012. LinkGoogle Scholar[55] Nielsen J. M., King P. I., Schauer F. R., Stevens C. and Hoke J. L., “Detonation Propagation Through Ducts in a Pulsed Detonation Engine,” AIAA Paper 2011-0585, 2011. LinkGoogle Scholar[56] Matsuoka K., Mukai T. and Endo T., “Development of a Liquid-Purge Method for High-Frequency Operation of Pulse Detonation Combustor,” Combustion Science and Technology, Vol. 187, No. 5, 2015, pp. 747–764. doi:https://doi.org/10.1080/00102202.2014.965300 CBSTB9 0010-2202 CrossrefGoogle Scholar[57] Farinaccio R., Harris P. G. and Stowe R. A., “Turbulent Flow Effects on DDT Run-Up Distance for a Pulse Detonation Engine,” AIAA Paper 2004-3917, 2004. LinkGoogle Scholar[58] Wu M. H. and Lu T. H., “Development of a Chemical Microthruster Based on Pulsed Detonation,” Journal of Micromechanics and Microengineering, Vol. 22, No. 1, 2012, pp. 1–10. JMMIEZ 0960-1317 Google Scholar[59] Wu M. H., Burke M. P., Son S. F. and Yetter R. A., “Flame Acceleration and the Transition to Detonation of Stoichiometric Ethylene/Oxygen in Microscale Tubes,” Proceedings of the Combustion Institute, Vol. 31, No. 2, 2007, pp. 2429–2436. doi:https://doi.org/10.1016/j.proci.2006.08.098 CrossrefGoogle Scholar[60] Wu M. H. and Wang C. Y., “Reaction Propagation Modes in Millimeter-Scale Tubes for Ethylene/Oxygen Mixtures,” Proceedings of the Combustion Institute, Vol. 33, No. 2, 2011, pp. 2287–2293. doi:https://doi.org/10.1016/j.proci.2010.07.081 CrossrefGoogle Scholar[61] Matsuoka K., Esumi M., Ikeguchi K. B., Kasahara J., Matsuo A. and Funaki I., “Optical and Thrust Measurement of a Pulse Detonation Combustor with a Coaxial Rotary Valve,” Combustion and Flame, Vol. 159, No. 3, 2012, pp. 1321–1338. doi:https://doi.org/10.1016/j.combustflame.2011.10.001 CBFMAO 0010-2180 CrossrefGoogle Scholar[62] Kasahara J., Matsuoka K., Matsuo A. and Funaki I., “Experimental Study on a Four-Cylinder Pulse Detonation Rocket Engine Flight Test Model,” 2013 International Workshop on Detonation for Propulsion, Air Force Research Lab., Wright–Patterson AFB, OH, July 2013. Google Scholar[63] Brophy C. M., Sinibaldi J. O., Netzer D. W. and Johnston R. G., “Operation of a JP-10/Air Pulse Detonation Engine,” AIAA Paper 2000-3591, 2000. Google Scholar[64] Huang Y., Tang H., Li J. and Zhang C., “Studies of DDT Enhancement Approaches for Kerosene-Fueled Small-Scale Pulse Detonation Engines Applications,” Shock Waves, Vol. 22, No. 6, 2012, pp. 615–625. doi:https://doi.org/10.1007/s00193-012-0396-5 SHWAEN 0938-1287 CrossrefGoogle Scholar[65] Kitano S., Kimura Y., Sato H. and Hayashi A. K., “Micro-Size Pulse Detonation Engine Performance,” AIAA Paper 2007-0581, 2007. LinkGoogle Scholar[66] Bratkovich T. E., Aarnio M. J., Williams J. T. and Bussing T. R. A., “An Introduction to Pulse Detonation Rocket Engines (PDRE),” AIAA Paper 1997-2687, 1997. LinkGoogle Scholar[67] Valaev A. A., Zhimerin D. G., Mironov E. A. and Popov V. A., “Method and Apparatus for Intermittent Combustion,” U.S. Patent 3954380, 1976. Google Scholar[68] DeRoche M., “Repetitive Detonation Generator,” U.S. Patent 5800153, 1998. Google Scholar[69] Brophy C. M. and Netzer D. W., “Effects of Ignition Characteristics and Geometry on the Performance of a JP-10/O2 Fueled Pulse Detonation Engine,” AIAA Paper 1999-2635, 1999. LinkGoogle Scholar[70] Panicker P. K., Wilson D. R. and Lu F. K., “Operational Issues Affecting the Practical Implementation of Pulsed Detonation Engines,” AIAA Paper 2006-7958, 2006. LinkGoogle Scholar[71] Li J. L., “Investigations on Key Modes of a Multi-Mode Combined Detonation Engine,” Ph.D. Dissertation, Northwestern Polytechnical Univ., Xi'an, P. R. China, 2011. Google Scholar[72] Lu F. K. and Jensen D. S., “Potential Viability of a Fast-Acting Micro-Solenoid Valve for Pulsed Detonation Fuel Injection,” AIAA Paper 2003-0888, 2003. LinkGoogle Scholar[73] Bussing T. R. A., “Rotary Valve Multiple Combustor Pulse Detonation Engine,” U.S. Patent 5513489, Adroit Systems, Inc., Alexandria, VA, 1996. Google Scholar[74] Bussing T., “A Rotary Valve Multiple Pulse Detonation Engine (RVMPDE),” AIAA Paper 1995-2577, 1995. Google Scholar[75] Bussing T. R. A., Bratkovich T. E. and Hinkey J. B., “Practical Implementation of Pulse Detonations Engines,” AIAA Paper 1997-2748, 1997. Google Scholar[76] Hinkey J. B., William J. T., Henderson S. E. and Bussing T. R. A., “Rotary-Valved, Multiple-Cycle, Pulse Detonation Engine Experimental Demonstration,” AIAA Paper 1997-2746, 1997. LinkGoogle Scholar[77] Schauer F., Stutrud J. and Bradley R., “Detonation Initiation Studies and Performance Results for Pulsed Detonation Engine Applications,” AIAA Paper 2001-1129, 2001. CrossrefGoogle Scholar[78] Anderson E. K., Hoke J. L. and Schauer F. R., “Novel Valving Technique for Pulse Detonation Engines,” AIAA Paper 2010-6879, 2010. LinkGoogle Scholar[79] Anderson E., Stevens C. A., Hoke J. L. and Schauer F., “Ball Valve Pulsed Detonation Engine,” AIAA Paper 2011-0588, 2011. LinkGoogle Scholar[80] Stuessy W. S. and Wilson D. R., “Experimental Investigation of a Multi-Cycle Pulsed Detonation Wave Engine,” AIAA Paper 1996-0346, 1996. LinkGoogle Scholar[81] Lu F. K., Meyers J. M. and Wilson D. R., “Experimental Study of Propane-Fueled Pulsed Detonation Rocket,” AIAA Paper 2003-6974, 2003. LinkGoogle Scholar[82] Cutler A. D., “Parametric Study of High Frequency Pulse Detonation Tubes,” AIAA Paper 2008-4691, 2008. Google Scholar[83] Nguyen N. and Cutler A. D., “Pressure and Thrust Measurements of a High-Frequency Pulsed Detonation Tube,” AIAA Paper 2008-4690, 2008. LinkGoogle Scholar[84] Cutler A. D., “High-Frequency Pulsed Combustion Actuator Experiments,” AIAA Journal, Vol. 49, No. 9, 2011, pp. 1943–1950. doi:https://doi.org/10.2514/1.J050876 AIAJAH 0001-1452 LinkGoogle Scholar[85] Cutler A. D. and Drummond J. P., “Toward a High-Frequency Pulsed-Detonation Actuator,” AIAA Paper 2006-0555, 2006. LinkGoogle Scholar[86] Matsuoka K., Esumi M., Kasahara J. and Ogawa S., “Study on Valve Systems for Pulse Detonation Engines,” AIAA Paper 2010-6672, 2010. LinkGoogle Scholar[87] Morozumi T., Matsuoka K., Sakamoto R., Fujiwara Y., Kasahara J., Matsuo A. and Funaki I., “Study on a Four-Cylinder Pulse Detonation Rocket Engine with a Coaxial High Frequency Rotary Valve,” AIAA Paper 2013-0279, 2013. LinkGoogle Scholar[88] Matsuoka K., Takagi S., Kasahara J., Morozumi T., Kashiwazaki T., Fujiwara Y., Matsuo A. and Funaki I., “Study on a Rotary-Valved Four-Cylinder Pulse Detonation Rocket: Six Degree-of-Freedom Flight Measurement,” AIAA Paper 2014-1319, 2014. Google Scholar[89] Morozumi T., Sakamoto R., Kashiwazaki T., Matsuoka K., Takagi S., Kasahara J., Matsuo A. and Funaki I., “Study on a Rotary-Valved Four-Cylinder Pulse Detonation Rocket: Thrust Measurement by Ground Test,” AIAA Paper 2014-1317, 2014. Google Scholar[90] Baklanov D. I., Gvozdeva L. G. and Scherbak N. B., “Pulsed Detonation Combustion Chamber for PDE,” High-Speed Deflagration and Detonation: Fundamentals and Control, edited by Roy G. D. , Frolov S. M., Netzer D. M. and Borisov A. A., ELEX-KM Publ., Moscow, 2001, pp. 239–250. Google Scholar[91] Ma F., Choi J. Y. and Yang V., “Internal Flow Dynamics and Performance of Valveless Airbreathing Pulse Detonation Engine,” AIAA Paper 2006-1024, 2006. LinkGoogle Scholar[92] Ma F., Choi J. Y. and Yang V., “Internal Flow Dynamics in a Valveless Airbreathing Pulse Detonation Engine,” Journal of Propulsion and Power, Vol. 24, No. 3, 2008, pp. 479–490. doi:https://doi.org/10.2514/1.29957 JPPOEL 0748-4658 LinkGoogle Scholar[93] Ma F., Choi J. Y. and Yang V., “Numerical Modeling of Valveless Airbreathing Pulse Detonation Engine,” AIAA Paper 2005-0227, 2005. LinkGoogle Scholar[94] Piton D., Prigent A., Serre L. and Monjaret C., “Performance of a Valveless Air Breathing Pulse Detonation Engine,” AIAA Paper 2004-3749, 2004. Google Scholar[95] Shimo M. and Heister S. D., “Multicyclic-Detonation-Initiation Studies in Valveless Pulsed Detonation Combustors,” Journal of Propulsion and Power, Vol. 24, No. 2, 2008, pp. 336–344. doi:https://doi.org/10.2514/1.29546 JPPOEL 0748-4658 LinkGoogle Scholar[96] Stoddard W., George A. S., Driscoll R. and Gutmark E. J., “Experimental Study of Valveless Pulse Detonation Engine with Static Thrust,” AIAA Paper 2011-5788, 2011. LinkGoogle Scholar[97] Stoddard W., George A. S., Driscoll R. and Gutmark E. J., “Experimental Optimization of Static Valveless Self-Aspiration of a Pulse Detonation Engine,” AIAA Paper 2012-3705, 2012. LinkGoogle Scholar[98] Wang K., Fan W., Lu W., Chen F., Zhang Q. B. and Yan C. J., “Study on a Liquid-Fueled and Valveless Pulse Detonation Rocket Engine Without the Purge Process,” Energy, Vol. 71, No. 1, 2014, pp. 605–614. doi:https://doi.org/10.1016/j.energy.2014.05.002 ENGYD4 0149-9386 Google Scholar[99] Matsuoka K., “High-Frequency Operation of a Valveless Pulse Detonation Combustor,” 2015 International Workshop on Detonation for Propulsion, Jianping Wang, Peking Univ., China, Aug. 2015. Google Scholar[100] Tucker K. C., King P. I., Bradley R. P. and Schauer F. R., “The Use of a Flash Vaporization System with Liquid Hydrocarbon Fuels in a Pulse Detonation Engine,” AIAA Paper 2004-0868, 2004. LinkGoogle Scholar[101] Panicker P. K., Li J. M., Lu F. K. and Wilson D. R., “Development of a Compact Liquid Fueled Pulsed Detonation Engine with Predetonator,” AIAA Paper 2007-0237, 2007. Google Scholar[102] Miser C. L., King P. I. and Schauer F. R., “PDE Flash Vaporization System for Hydrocarbon Fuel Using Thrust Tube Waste Heat,” AIAA Paper 2005-3511, 2005. LinkGoogle Scholar[103] Tucker K. C., King P. I. and Schauer F. R., “Hydrocarbon Fuel Flash Vaporization for Pulsed Detonation Combustion,” Journal of Propulsion and Power, Vol. 24, No. 4, 2008, pp. 788–796. doi:https://doi.org/10.2514/1.28412 JPPOEL 0748-4658 LinkGoogle Scholar[104] Helfrich T. M., King P. I., Hoke J. L. and Schauer F. R., “Effect of Supercritical Fuel Injection on Cycle Performance of Pulsed Detonation Engine,” Journal of Propulsion and Power, Vol. 23, No. 4, 2007, pp. 748–755. doi:https://doi.org/10.2514/1.26551 JPPOEL 0748-4658 LinkGoogle Scholar[105] Wang K., Fan W., Zhu X. D., Yan Y. and Gao Z., “Experimental Investigations on Effects of Wall-Temperature on Performance of a Pulse Detonation Rocket Engine,” Experimental Thermal and Fluid Science, Vol. 48, No. 1, 2013, pp. 230–237. doi:https://doi.org/10.1016/j.expthermflusci.2013.03.005 ETFSEO 0894-1777 CrossrefGoogle Scholar[106] Lu F. K., Carter J. D. and Wilson D. R., “Development of a Large Pulse Detonation Engine Demonstrator,” AIAA Paper 2011-5544, 2011. LinkGoogle Scholar[107] Hoke J., Bradley R. and Schauer F., “Heat Transfer and Thermal Management in a Pulsed Detonation Engine,” AIAA Paper 2003-6486, 2003. LinkGoogle Scholar[108] Helfrich T. M., Schauer F. R., Bradley R. P. and Hoke J., L., “Evaluation of Catalytic and Thermal Cracking in a JP-8 Fueled Pulsed Detonation Engine,” AIAA Paper 2007-0235, 2007. LinkGoogle Scholar[109] Wen C. S., Chung K. M., Lu F. K. and Lai W. H., “Assessment of Flash-Boiling for Pulse Detonation Engines,” International Journal of Heat and Mass Transfer, Vol. 55, Nos. 11–12, 2012, pp. 2751–2760. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.030 IJHMAK 0017-9310 CrossrefGoogle Scholar[110] Bazhenova T. V. and Golub V. V., “Use of Gas Detonation in a Controlled Frequency Mode,” Combustion, Explosion, and Shock Waves, Vol. 39, No. 4, 2003, pp. 365–381. doi:https://doi.org/10.1023/A:1024704602865 CrossrefGoogle Scholar[111] Radulescu M. I. and Hanson R. K., “Effect of Heat Loss on Pulse-Detonation-Engine Flow Fields and Performance,” Journal of Propulsion and Power, Vol. 21, No. 2, 2005, pp. 274–285. doi:https://doi.org/10.2514/1.10286 JPPOEL 0748-4658 LinkGoogle Scholar Previous article Next article
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Liu采纳,获得10
1秒前
李爱国应助脆弱的仙人掌采纳,获得10
2秒前
打打应助张自信采纳,获得10
2秒前
2秒前
虚幻羊发布了新的文献求助10
3秒前
沙拉发布了新的文献求助10
3秒前
iNk应助陈淑玲采纳,获得10
3秒前
科研通AI2S应助BWZ采纳,获得10
3秒前
3秒前
4秒前
Ade完成签到,获得积分10
5秒前
5秒前
lx840518发布了新的文献求助10
5秒前
兴奋大开完成签到,获得积分10
6秒前
虚幻羊完成签到,获得积分20
6秒前
Meng完成签到,获得积分10
7秒前
张掖完成签到,获得积分10
7秒前
Lucas应助kangkang采纳,获得10
8秒前
大晨完成签到,获得积分10
8秒前
哈哈哈haha发布了新的文献求助20
9秒前
cc发布了新的文献求助10
9秒前
Yolo发布了新的文献求助10
9秒前
9秒前
allenice完成签到,获得积分10
9秒前
10秒前
10秒前
音乐发布了新的文献求助10
10秒前
英姑应助科研通管家采纳,获得10
11秒前
华仔应助沙拉采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
Owen应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得30
12秒前
FashionBoy应助科研通管家采纳,获得30
12秒前
Orange应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762