清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Use of dsRNA in Crop Improvement

RNA沉默 基因沉默 生物 RNA干扰 基因 核糖核酸 基因表达 反式siRNA 遗传学 RNA诱导沉默复合物 转基因作物 细胞生物学 转基因
作者
Lau Su Ee,Purabi Mazumdar,Pooja Singh,Jennifer Ann Harikrishna
出处
期刊:Crop improvement 卷期号:: 217-252 被引量:1
标识
DOI:10.1007/978-3-319-65079-1_10
摘要

Over recent years, many crops have benefited from the application of genetic transformation approaches to improve important agronomic and horticultural traits. The discovery of RNA-mediated gene silencing (RNA silencing) has allowed the application of precise approaches to inhibit plant pathogens and to alter plant metabolism and development. RNA silencing is initiated by double-stranded RNA (dsRNA) leading to sequence homology-dependent translational inhibition of a target mRNA or transcriptional repression of a target gene. RNA silencing was first described in plants as post-transcriptional gene silencing (PTGS), virus cross-protection and co-suppression. Activated by the presence of short dsRNA inside the cell, RNA silencing is a form of negative gene regulation lending itself towards the generation of loss-of-function genetic changes. Applications include reducing gene expression of a pathogen, such as a virus; reducing the expression of an endogenous plant gene to alter biosynthesis, such as that of an undesired allergen, toxin or flower or fruit pigment; reducing the expression of an endogenous plant gene to alter nutritional qualities, such as altered starch content and reducing the expression of endogenous genes to alter plant development. Alteration of plant phenotypes and inhibiting plant pathogens through the direct application of dsRNA to crop plants has provided a rapid and efficient method that is feasible for some situations and has the advantage of avoiding the steps in plant transformation and regeneration. In this chapter, we review examples that outline the technology for the application of dsRNA in crops, and discuss the role this has played in crop improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
19秒前
32秒前
chao Liu完成签到 ,获得积分10
44秒前
46秒前
zh完成签到 ,获得积分10
47秒前
1分钟前
1分钟前
李豆豆发布了新的文献求助10
1分钟前
1分钟前
Lucas应助11oneelevenisme采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
香蕉觅云应助lda采纳,获得10
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
小强完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
樱桃猴子应助白华苍松采纳,获得10
3分钟前
3分钟前
4分钟前
tufei发布了新的文献求助10
4分钟前
4分钟前
tufei完成签到,获得积分10
4分钟前
4分钟前
小星云发布了新的文献求助100
4分钟前
川藏客完成签到 ,获得积分10
4分钟前
4分钟前
Arthur完成签到,获得积分10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526584
求助须知:如何正确求助?哪些是违规求助? 3107022
关于积分的说明 9282092
捐赠科研通 2804622
什么是DOI,文献DOI怎么找? 1539534
邀请新用户注册赠送积分活动 716583
科研通“疑难数据库(出版商)”最低求助积分说明 709581