Comparative Performances of Airborne LiDAR Height and Intensity Data for Leaf Area Index Estimation

激光雷达 叶面积指数 遥感 测距 均方误差 强度(物理) 环境科学 数学 计算机科学 统计 地理 物理 光学 生态学 电信 生物
作者
Shezhou Luo,Jing M. Chen,Cheng Wang,Alemu Gonsamo,Xiaohuan Xi,Yi Lin,Mingjie Qian,Dailiang Peng,Sheng Nie,Haiming Qin
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 300-310 被引量:50
标识
DOI:10.1109/jstars.2017.2765890
摘要

Leaf area index (LAI) estimation based on remote sensing data has often relied on the use of spectral vegetation indices from optical data. However, it is difficult to accurately estimate LAI due to saturation of spectral signals. Light detection and ranging (LiDAR) systems have emerged as promising technologies for overcoming the saturation problem, and an increasing number of studies have been conducted on LAI estimation using LiDAR data. In this study, we compared the performance of LAI estimation using LiDAR height and intensity data, and explored the potential for estimating forest LAI using combined LiDAR height and intensity data. LAI estimation models were established using LiDAR height, intensity, and a combination of LiDAR height and intensity metrics based on a random forest regression algorithm. Our results show that the laser intercept index derived from LiDAR height or intensity data was the most important predictor for LAI. Field measurements of LAI at 64 sites were used to assess the power of various LiDAR metrics in predicting LAI. The results show that both LiDAR height and intensity metrics alone could reliably estimate forest LAI. However, compared to LiDAR intensity metrics [ $R^{{\rm 2}}\,= \,0.610$ with root mean squared error (RMSE) of 0.664], LiDAR height metrics had a better predictive power ( $R^{{\rm 2}}\,= \,0.765$ with RMSE of 0.562). Moreover, the combined LiDAR height and intensity metrics resulted in the highest LAI estimation accuracy ( $R^{{\rm 2}}\,= \,0.809$ with RMSE of 0.501). Therefore, the combination of LiDAR height and intensity data has a great potential for improving the LAI estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
何浏亮完成签到,获得积分10
1秒前
长青发布了新的文献求助10
1秒前
3秒前
丘比特应助zxc采纳,获得10
3秒前
CodeCraft应助dzll采纳,获得10
4秒前
婷婷发布了新的文献求助10
5秒前
Jupiter完成签到,获得积分10
5秒前
5秒前
meena完成签到,获得积分20
6秒前
科研通AI5应助明理的绿柏采纳,获得10
7秒前
8秒前
狂野的锦程完成签到,获得积分10
9秒前
momo发布了新的文献求助10
9秒前
10秒前
10秒前
RR发布了新的文献求助10
10秒前
11秒前
科研通AI5应助小夏饭桶采纳,获得10
11秒前
Duchung发布了新的文献求助10
13秒前
昕昕子发布了新的文献求助10
14秒前
15秒前
15秒前
水lunwen完成签到 ,获得积分10
15秒前
CodeCraft应助笑弯了眼采纳,获得10
16秒前
沉静晓丝发布了新的文献求助10
16秒前
dzll发布了新的文献求助10
16秒前
林思琦完成签到,获得积分10
16秒前
羊羊吃肉不吃草完成签到 ,获得积分10
17秒前
ybheart完成签到,获得积分10
19秒前
玉暖洋洋发布了新的文献求助10
19秒前
Duchung完成签到,获得积分10
19秒前
21秒前
我是老大应助guhuihaozi采纳,获得10
22秒前
菠萝水手完成签到,获得积分10
22秒前
zhangkele完成签到,获得积分10
22秒前
FashionBoy应助Ir采纳,获得10
23秒前
25秒前
Pweni完成签到,获得积分10
26秒前
绿色心情完成签到,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174